Construction of a trapped mode with a small frequency in an elastic waveguide
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 1, pp. 41-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2020_54_1_a3,
     author = {S. A. Nazarov},
     title = {Construction of a trapped mode with a small frequency in an elastic waveguide},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {41--57},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_1_a3/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Construction of a trapped mode with a small frequency in an elastic waveguide
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 41
EP  - 57
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_1_a3/
LA  - ru
ID  - FAA_2020_54_1_a3
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Construction of a trapped mode with a small frequency in an elastic waveguide
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 41-57
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_1_a3/
%G ru
%F FAA_2020_54_1_a3
S. A. Nazarov. Construction of a trapped mode with a small frequency in an elastic waveguide. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 1, pp. 41-57. http://geodesic.mathdoc.fr/item/FAA_2020_54_1_a3/

[1] S. G. Lekhnitskii, Teoriya uprugosti anizotropnogo tela, Nauka, M., 1977 | MR

[2] A. Bertram, Elasticity and Placticity of Large Deformations, Springer-Verlag, Berlin–Heidelberg, 2005 | MR

[3] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002

[4] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980

[5] S. A. Nazarov, “Asimptotika sobstvennykh chisel na nepreryvnom spektre regulyarno vozmuschennogo kvantovogo volnovoda”, TMF, 167:2 (2011), 239–262 | DOI

[6] S. A. Nazarov, “Prinuditelnaya ustoichivost prostogo sobstvennogo chisla na nepreryvnom spektre volnovoda”, Funkts. analiz i ego pril., 47:3 (2013), 37–53 | DOI | MR | Zbl

[7] S. A. Nazarov, “Nesamosopryazhennye ellipticheskie zadachi s polinomialnym svoistvom v oblastyakh, imeyuschikh tsilindricheskie vykhody na beskonechnost”, Zap. nauchn. sem. POMI, 249 (1997), 212–230 | Zbl

[8] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, UMN, 54:5 (1999), 77–142 | DOI | MR | Zbl

[9] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy MMO, 16 (1963), 219–292

[10] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[11] B. A. Shoikhet, “Ob asimptoticheski tochnykh uravneniyakh izgiba tonkikh plit slozhnoi struktury”, PMM, 37:5 (1973), 913–924

[12] P. G. Ciarlet, Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis, Masson, Paris, 1988 | MR

[13] S. A. Nazarov, “Asimptoticheskii analiz proizvolno anizotropnoi plastiny peremennoi tolschiny (pologoi obolochki)”, Matem. sb., 191:7 (2000), 129–159 | DOI | MR | Zbl

[14] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR

[15] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu nesamosopryazhennykh operatorov, Nauka, M., 1965