Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2020_54_1_a3, author = {S. A. Nazarov}, title = {Construction of a trapped mode with a small frequency in an elastic waveguide}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {41--57}, publisher = {mathdoc}, volume = {54}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_1_a3/} }
S. A. Nazarov. Construction of a trapped mode with a small frequency in an elastic waveguide. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 1, pp. 41-57. http://geodesic.mathdoc.fr/item/FAA_2020_54_1_a3/
[1] S. G. Lekhnitskii, Teoriya uprugosti anizotropnogo tela, Nauka, M., 1977 | MR
[2] A. Bertram, Elasticity and Placticity of Large Deformations, Springer-Verlag, Berlin–Heidelberg, 2005 | MR
[3] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002
[4] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980
[5] S. A. Nazarov, “Asimptotika sobstvennykh chisel na nepreryvnom spektre regulyarno vozmuschennogo kvantovogo volnovoda”, TMF, 167:2 (2011), 239–262 | DOI
[6] S. A. Nazarov, “Prinuditelnaya ustoichivost prostogo sobstvennogo chisla na nepreryvnom spektre volnovoda”, Funkts. analiz i ego pril., 47:3 (2013), 37–53 | DOI | MR | Zbl
[7] S. A. Nazarov, “Nesamosopryazhennye ellipticheskie zadachi s polinomialnym svoistvom v oblastyakh, imeyuschikh tsilindricheskie vykhody na beskonechnost”, Zap. nauchn. sem. POMI, 249 (1997), 212–230 | Zbl
[8] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, UMN, 54:5 (1999), 77–142 | DOI | MR | Zbl
[9] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy MMO, 16 (1963), 219–292
[10] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[11] B. A. Shoikhet, “Ob asimptoticheski tochnykh uravneniyakh izgiba tonkikh plit slozhnoi struktury”, PMM, 37:5 (1973), 913–924
[12] P. G. Ciarlet, Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis, Masson, Paris, 1988 | MR
[13] S. A. Nazarov, “Asimptoticheskii analiz proizvolno anizotropnoi plastiny peremennoi tolschiny (pologoi obolochki)”, Matem. sb., 191:7 (2000), 129–159 | DOI | MR | Zbl
[14] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR
[15] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu nesamosopryazhennykh operatorov, Nauka, M., 1965