Uniqueness theorem for the two-dimensional sigma function
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 1, pp. 29-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2020_54_1_a2,
     author = {A. V. Domrin},
     title = {Uniqueness theorem for the two-dimensional sigma function},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {29--40},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_1_a2/}
}
TY  - JOUR
AU  - A. V. Domrin
TI  - Uniqueness theorem for the two-dimensional sigma function
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 29
EP  - 40
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_1_a2/
LA  - ru
ID  - FAA_2020_54_1_a2
ER  - 
%0 Journal Article
%A A. V. Domrin
%T Uniqueness theorem for the two-dimensional sigma function
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 29-40
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_1_a2/
%G ru
%F FAA_2020_54_1_a2
A. V. Domrin. Uniqueness theorem for the two-dimensional sigma function. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 1, pp. 29-40. http://geodesic.mathdoc.fr/item/FAA_2020_54_1_a2/

[1] K. Weierstrass, Formeln und Lehrsätze zum Gebrauche der elliptischen Functionen, Nach Vorlesungen und Aufzeichnungen des Herrn K. Weierstrass bearbeitet und herausgegeben von H. A. Schwarz, Verlag von Julius Springer, Berlin, 1893 | MR

[2] F. Klein, “Über hyperelliptische Sigmafunktionen. Erster Aufsatz”, Math. Ann., 27 (1886), 431–464 ; Zweiter Aufsatz, Math. Ann., 32 (1888), 351–380 | DOI | MR | DOI | MR

[3] H. F. Baker, An Introduction to the Theory of Multiply Periodic Functions, Cambridge Univ. Press, Cambridge, 1907 | MR | Zbl

[4] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Hyperelliptic Kleinian functions and applications”, Solitons, geometry and topology: on the crossroad, American Mathematical Society Translations, Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 1–33 | DOI | MR

[5] V. M. Bukhshtaber, D. V. Leikin, “Uravneniya teploprovodnosti v negolonomnom repere”, Funkts. analiz i ego pril., 38:2 (2004), 12–27 | DOI | MR | Zbl

[6] V. M. Bukhshtaber, D. V. Leikin, “Zakony slozheniya na yakobianakh ploskikh algebraicheskikh krivykh”, Trudy MIAN, 251 (2005), 54–126 | Zbl

[7] V. M. Bukhshtaber, D. V. Leikin, “Reshenie zadachi differentsirovaniya abelevykh funktsii po parametram dlya semeistv $(n,s)$-krivykh”, Funkts. analiz i ego pril., 42:4 (2008), 24–36 | DOI | MR | Zbl

[8] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, Multi-variable sigma-functions: old and new results, arXiv: 1810.11079

[9] J. C. Eilbeck, J. Gibbons, Y. Onishi, S. Yasuda, Theory of heat equations for sigma functions, arXiv: 1711.08395

[10] D. Khavinson, L. Lundberg, Linear Holomorphic Partial Differential Equations and Classical Potential Theory, Amer. Math. Soc., Providence, RI, 2018 | MR | Zbl

[11] M. Zerner, “Domaine d'holomorphie des fonctions vérifiànt une équation aux dérivées partielles”, C. R. Acad. Sci. Paris, Ser. A, 272 (1971), 1646–1648 | MR | Zbl

[12] J. M. Bony, P. Schapira, “Existence et prolongement des solutions holomorphes des équations aux derivées partielles”, Invent Math., 17 (1972), 95–105 ; Matematika, 17:1 (1973), 162–171 | DOI | MR | Zbl | Zbl

[13] J. Leray, “Probléme de Cauchy. I: Uniformisation de la solution du probléme linéaire analytique de Cauchy près de la variété qui porte les données de Cauchy”, Bull. Soc. Math. France, 85 (1957), 389–429 ; Matematika, 3:5 (1959), 57–89 | DOI | MR | Zbl

[14] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. I, Mir, M., 1986

[15] B. V. Shabat, Vvedenie v kompleksnyi analiz, Ch. 1. Funktsii odnogo peremennogo. Ch. 2. Funktsii neskolkikh peremennykh, Nauka, M., 1985