Conditional measures of determinantal point processes
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 1, pp. 11-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2020_54_1_a1,
     author = {A. I. Bufetov},
     title = {Conditional measures of determinantal point processes},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {11--28},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_1_a1/}
}
TY  - JOUR
AU  - A. I. Bufetov
TI  - Conditional measures of determinantal point processes
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 11
EP  - 28
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_1_a1/
LA  - ru
ID  - FAA_2020_54_1_a1
ER  - 
%0 Journal Article
%A A. I. Bufetov
%T Conditional measures of determinantal point processes
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 11-28
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_1_a1/
%G ru
%F FAA_2020_54_1_a1
A. I. Bufetov. Conditional measures of determinantal point processes. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 1, pp. 11-28. http://geodesic.mathdoc.fr/item/FAA_2020_54_1_a1/

[1] A. Borodin, A. Okounkov, G. Olshanski, “Asymptotics of Plancherel measures for symmetric groups”, J. Amer. Math. Soc., 13:3 (2000), 481–515 | DOI | MR | Zbl

[2] A. I. Bufetov, “Quasi-symmetries of determinantal point processes”, Ann. Probab., 46:2 (2018), 956–1003 | DOI | MR | Zbl

[3] A. I. Bufetov, “Rigidity of determinantal point processes with the Airy, the Bessel and the gamma kernel”, Bull. Math. Sci., 6:1 (2016), 163–172 | DOI | MR | Zbl

[4] S. Ghosh, “Determinantal processes and completeness of random exponentials: the critical case”, Probab. Theory Related Fields, 163:3 (2015), 643–665 | DOI | MR | Zbl

[5] S. Ghosh, Y. Peres, “Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues”, Duke Math. J., 166:10 (2017), 1789–1858 | DOI | MR | Zbl

[6] G. Olshanski, “The quasi-invariance property for the Gamma kernel determinantal measure”, Adv. Math., 226:3 (2011), 2305–2350 | DOI | MR | Zbl

[7] V. A. Rokhlin, “Ob osnovnykh ponyatiyakh teorii mery”, Matem. sb., 25(67):1 (1949), 107–150 | Zbl

[8] T. Shirai, Y. Takahashi, “Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes”, J. Funct. Anal., 205:2 (2003), 414–463 | DOI | MR | Zbl

[9] T. Shirai, Y. Takahashi, “Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties”, Ann. Probab., 31:3 (2003), 1533–1564 | DOI | MR | Zbl

[10] B. Simon, Trace Ideals and Their Applications, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[11] Ya. G. Sinai, Teoriya fazovykh perekhodov (strogie rezultaty), Nauka, M., 1980

[12] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc., Providence, RI, 1967 | MR

[13] A. B. Soshnikov, “Determinantnye sluchainye tochechnye polya”, UMN, 55:5(335) (2000), 107–160 | DOI | MR | Zbl

[14] C. A. Tracy, H. Widom, “Level-spacing distributions and the Airy kernel”, Comm. Math. Phys., 159:1 (1994), 151–174 | DOI | MR | Zbl

[15] C. A. Tracy, H. Widom, “Level spacing distributions and the Bessel kernel”, Comm. Math. Phys., 161:2 (1994), 289–309 | DOI | MR | Zbl