Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2020_54_1_a1, author = {A. I. Bufetov}, title = {Conditional measures of determinantal point processes}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {11--28}, publisher = {mathdoc}, volume = {54}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_1_a1/} }
A. I. Bufetov. Conditional measures of determinantal point processes. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 1, pp. 11-28. http://geodesic.mathdoc.fr/item/FAA_2020_54_1_a1/
[1] A. Borodin, A. Okounkov, G. Olshanski, “Asymptotics of Plancherel measures for symmetric groups”, J. Amer. Math. Soc., 13:3 (2000), 481–515 | DOI | MR | Zbl
[2] A. I. Bufetov, “Quasi-symmetries of determinantal point processes”, Ann. Probab., 46:2 (2018), 956–1003 | DOI | MR | Zbl
[3] A. I. Bufetov, “Rigidity of determinantal point processes with the Airy, the Bessel and the gamma kernel”, Bull. Math. Sci., 6:1 (2016), 163–172 | DOI | MR | Zbl
[4] S. Ghosh, “Determinantal processes and completeness of random exponentials: the critical case”, Probab. Theory Related Fields, 163:3 (2015), 643–665 | DOI | MR | Zbl
[5] S. Ghosh, Y. Peres, “Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues”, Duke Math. J., 166:10 (2017), 1789–1858 | DOI | MR | Zbl
[6] G. Olshanski, “The quasi-invariance property for the Gamma kernel determinantal measure”, Adv. Math., 226:3 (2011), 2305–2350 | DOI | MR | Zbl
[7] V. A. Rokhlin, “Ob osnovnykh ponyatiyakh teorii mery”, Matem. sb., 25(67):1 (1949), 107–150 | Zbl
[8] T. Shirai, Y. Takahashi, “Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes”, J. Funct. Anal., 205:2 (2003), 414–463 | DOI | MR | Zbl
[9] T. Shirai, Y. Takahashi, “Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties”, Ann. Probab., 31:3 (2003), 1533–1564 | DOI | MR | Zbl
[10] B. Simon, Trace Ideals and Their Applications, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl
[11] Ya. G. Sinai, Teoriya fazovykh perekhodov (strogie rezultaty), Nauka, M., 1980
[12] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc., Providence, RI, 1967 | MR
[13] A. B. Soshnikov, “Determinantnye sluchainye tochechnye polya”, UMN, 55:5(335) (2000), 107–160 | DOI | MR | Zbl
[14] C. A. Tracy, H. Widom, “Level-spacing distributions and the Airy kernel”, Comm. Math. Phys., 159:1 (1994), 151–174 | DOI | MR | Zbl
[15] C. A. Tracy, H. Widom, “Level spacing distributions and the Bessel kernel”, Comm. Math. Phys., 161:2 (1994), 289–309 | DOI | MR | Zbl