Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2019_53_4_a4, author = {A. A. Tolstonogov}, title = {Densities of measures as an alternative to derivatives for measurable inclusions}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {52--62}, publisher = {mathdoc}, volume = {53}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a4/} }
TY - JOUR AU - A. A. Tolstonogov TI - Densities of measures as an alternative to derivatives for measurable inclusions JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2019 SP - 52 EP - 62 VL - 53 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a4/ LA - ru ID - FAA_2019_53_4_a4 ER -
A. A. Tolstonogov. Densities of measures as an alternative to derivatives for measurable inclusions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 4, pp. 52-62. http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a4/
[1] N. Dinculeanu, Vector Measures, VEB Deitscher Verlag der Wissenschaften, Berlin, 1966 | MR | Zbl
[2] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[3] J. J. Moreau, “Sur les mesures différentielles des fonctions vectorielles á variation localement bornée”, Trav. Sémin. d'Analyse Convexe, 5, no. 17, U.E.R. Math., Univ. Sci. Tech. Languedoc, Montpellier, 1975 | MR
[4] L. Thibault, “Moreau sweeping process with bounded truncated retraction”, J. Convex Anal., 23:4 (2016), 1051–1098 | MR | Zbl
[5] J. Diestel, J. J. Uhl Jr., Vector Measures, Amer. Math. Soc., Providence, RI, 1997 | MR
[6] M. Kunze, M. D. P. Monteiro Marques, “BV solutions to evolution problems with time dependent domains”, Set-valued Anal., 5:1 (1997), 57–72 | DOI | MR | Zbl
[7] J. F. Edmond, L. Thibault, “BV solutions of nonconvex sweeping process differential inclusion with perturbation”, J. Differential Equations, 226:1 (2006), 135–179 | DOI | MR | Zbl
[8] D. Azzam-Laouir, Ch. Castaing, M. D. P. Monteiro Marques, “Perturbed evolution problem with continuous bounded variation in time and applications”, Set-valued Var. Anal., 26:3 (2018), 693–728 | DOI | MR | Zbl
[9] M. D. P. Monteiro Marques, Differential inclusions in Nonsmooths Mechanical Problems. Shocks and dry friction, Birkhäuser, Basel–Boston–Berlin, 1993 | MR
[10] J. J. Moreau, M. Valadier, “A chain rule involving vector functions of bounded variation”, J. Funct. Anal., 74:2 (1987), 333–345 | DOI | MR | Zbl