Densities of measures as an alternative to derivatives for measurable inclusions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 4, pp. 52-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we consider rules for calculating the densities of Borel measures which are absolutely continuous with respect to a positive non-atomic Radon measure. The Borel measures are generated by composite functions which depend on continuous functions of bounded variation defined on an interval. The questions of the absolute continuity of Borel measures generated by composite functions with respect to the positive Radon measure and rules for calculating the densities of Borel measures generated by composite functions with respect to the positive non-atomic Radon measure are studied.
Keywords: function of bounded variation, Borel measure, variation of a function and a measure, density of a measure.
@article{FAA_2019_53_4_a4,
     author = {A. A. Tolstonogov},
     title = {Densities of measures as an alternative to derivatives for measurable inclusions},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {52--62},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a4/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - Densities of measures as an alternative to derivatives for measurable inclusions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2019
SP  - 52
EP  - 62
VL  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a4/
LA  - ru
ID  - FAA_2019_53_4_a4
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T Densities of measures as an alternative to derivatives for measurable inclusions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2019
%P 52-62
%V 53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a4/
%G ru
%F FAA_2019_53_4_a4
A. A. Tolstonogov. Densities of measures as an alternative to derivatives for measurable inclusions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 4, pp. 52-62. http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a4/

[1] N. Dinculeanu, Vector Measures, VEB Deitscher Verlag der Wissenschaften, Berlin, 1966 | MR | Zbl

[2] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[3] J. J. Moreau, “Sur les mesures différentielles des fonctions vectorielles á variation localement bornée”, Trav. Sémin. d'Analyse Convexe, 5, no. 17, U.E.R. Math., Univ. Sci. Tech. Languedoc, Montpellier, 1975 | MR

[4] L. Thibault, “Moreau sweeping process with bounded truncated retraction”, J. Convex Anal., 23:4 (2016), 1051–1098 | MR | Zbl

[5] J. Diestel, J. J. Uhl Jr., Vector Measures, Amer. Math. Soc., Providence, RI, 1997 | MR

[6] M. Kunze, M. D. P. Monteiro Marques, “BV solutions to evolution problems with time dependent domains”, Set-valued Anal., 5:1 (1997), 57–72 | DOI | MR | Zbl

[7] J. F. Edmond, L. Thibault, “BV solutions of nonconvex sweeping process differential inclusion with perturbation”, J. Differential Equations, 226:1 (2006), 135–179 | DOI | MR | Zbl

[8] D. Azzam-Laouir, Ch. Castaing, M. D. P. Monteiro Marques, “Perturbed evolution problem with continuous bounded variation in time and applications”, Set-valued Var. Anal., 26:3 (2018), 693–728 | DOI | MR | Zbl

[9] M. D. P. Monteiro Marques, Differential inclusions in Nonsmooths Mechanical Problems. Shocks and dry friction, Birkhäuser, Basel–Boston–Berlin, 1993 | MR

[10] J. J. Moreau, M. Valadier, “A chain rule involving vector functions of bounded variation”, J. Funct. Anal., 74:2 (1987), 333–345 | DOI | MR | Zbl