On the stricture of normal Hausdorff operators on Lebesgue spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 4, pp. 27-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a generalization of Hausdorff operator and introduce the notion of the symbol of such an operator. Using this notion we describe under some natural conditions the structure and investigate important properties (such as invertibility, spectrum, norm, and compactness) of normal generalized Hausdorff operators on Lebesgue spaces over $\mathbb{R}^n.$ The examples of Cesàro operators are considered.
Keywords: Hausdorff operator, Cesàro operator, symbol of an operator, normal operator, spectrum, compact operator.
@article{FAA_2019_53_4_a2,
     author = {A. R. Mirotin},
     title = {On the stricture of normal {Hausdorff} operators on {Lebesgue} spaces},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {27--37},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a2/}
}
TY  - JOUR
AU  - A. R. Mirotin
TI  - On the stricture of normal Hausdorff operators on Lebesgue spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2019
SP  - 27
EP  - 37
VL  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a2/
LA  - ru
ID  - FAA_2019_53_4_a2
ER  - 
%0 Journal Article
%A A. R. Mirotin
%T On the stricture of normal Hausdorff operators on Lebesgue spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2019
%P 27-37
%V 53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a2/
%G ru
%F FAA_2019_53_4_a2
A. R. Mirotin. On the stricture of normal Hausdorff operators on Lebesgue spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 4, pp. 27-37. http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a2/

[1] A. Brown, P. R. Halmos, A. L. Shields, “Cesàro operators”, Acta Sci. Math. (Szeged), 26 (1965), 125–137 | MR | Zbl

[2] G. Brown, F. Móricz, “Multivariate Hausdorff operators on the spaces $L^p(\mathbb{R}^n)$”, J. Math. Anal. Appl., 271:2 (2002), 443–454 | DOI | MR | Zbl

[3] Yu. A. Brychkov, H.-J. Glaeske, A. P. Prudnikov, Vu Kim Tuan, Multidimentional Integral Transformations, Gordon and Breach Science Publishers, Philadelphia–Reading–Paris–Montreux–Tokyo–Melbourne, 1992 | MR

[4] Jie-cheng Chen, Da-shan Fan, Si-lei Wang, “Hausdorff operators on Euclidean space (a survey article)”, Appl. Math. J. Chinese Univ. Ser. B, 28:4 (2013), 548–564 | DOI | MR | Zbl

[5] C. Georgakis, “The Hausdorff mean of a Fourier–Stieltjes transform”, Proc. Amer. Math. Soc., 116:2 (1992), 465–471 | DOI | MR | Zbl

[6] G. Khardi, Raskhodyaschiesya ryady, IL, M., 1951

[7] C. S. Kubrusly, Elements of Operator Theory, Birkhauser, Boston, 2001 | MR | Zbl

[8] A. Lerner, E. Liflyand, “Multidimensional Hausdorff operators on the real Hardy space”, J. Austr. Math. Soc., 83:1 (2007), 79–86 | DOI | MR | Zbl

[9] E. Liflyand, “Open problems on Hausdorff operators”, Complex Analysis and Potential Theory, Proc. Conf. Satellite to ICM 2006 (Gebze, Turkey, 8–14 Sept. 2006), World Scientific, Hackensack, 2007, 280–285 | DOI | MR | Zbl

[10] E. Liflyand, “Hausdorff operators on Hardy spaces”, Eurasian Math. J., 4:4 (2013), 101–141 | MR | Zbl

[11] E. Liflyand, F. Móricz, “The Hausdorff operator is bounded on the real Hardy space $H^1(\mathbb{R})$”, Proc. Amer. Math. Soc., 128:5 (2000), 1391–1396 | DOI | MR | Zbl

[12] A. R. Mirotin, “Boundedness of Hausdorff operators on real Hardy spaces $H^1$ over locally compact groups”, J. Math. Anal. Appl., 473 (2019), 519–533, arXiv: 1808.08257v2 | DOI | MR | Zbl

[13] A. R. Mirotin, “Hilbert transform in context of locally compact abelian groups”, Int. J. Pure Appl. Math., 51:4 (2009), 463–474 | MR | Zbl

[14] A. R. Mirotin, The structure of normal Hausdorff operators on Lebesgue spaces, arXiv: 1812.02680v2

[15] B. E. Rhoades, “Spectra of some Hausdorff operators”, Acta. Sci. Math. (Szeged), 32 (1971), 91–100 | MR | Zbl

[16] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, Chast 2. Transtsendentnye funktsii, 2-e izd., Fizmatlit, M., 1963