Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2019_53_4_a0, author = {E. A. Goncharov and M. V. Finkel'berg}, title = {Coulomb branch of a multiloop quiver gauge theory}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {3--13}, publisher = {mathdoc}, volume = {53}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a0/} }
E. A. Goncharov; M. V. Finkel'berg. Coulomb branch of a multiloop quiver gauge theory. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 4, pp. 3-13. http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a0/
[1] A. Braverman, M. Finkelberg, H. Nakajima, “Towards a mathematical definition of Coulomb branches of $3$-dimensional $\mathcal{N}=4$ gauge theories, II”, Adv. Theor. Math. Phys., 22:5 (2018), 1071–1147, arXiv: 1601.03586 | DOI | MR | Zbl
[2] A. Braverman, M. Finkelberg, H. Nakajima, “Coulomb branches of $3d$ $\mathcal{N}=4$ quiver gauge theories and slices in the affine Grassmannian (with appendices by Alexander Braverman, Michael Finkelberg, Joel Kamnitzer, Ryosuke Kodera, Hiraku Nakajima, Ben Webster, and Alex Weekes)”, Adv. Theor. Math. Phys., 23:1 (2019), 75–166, arXiv: 1604.03625 | DOI | MR | Zbl
[3] S. Cabrera, A. Hanany, R. Kalveks, “Quiver theories and formulae for Slodowy slices of classical algebras”, Nuclear Phys. B, 939 (2019), 308–357 | DOI | MR | Zbl
[4] A. Hanany, N. Mekareeya, “Tri-vertices and $SU(2)$'s”, J. High Energy Phys., 2 (2011), 069 | DOI | MR | Zbl
[5] H. Kraft, C. Procesi, “On the geometry of conjugacy classes in classical groups”, Comment. Math. Helv., 57:4 (1982), 539–602 | DOI | MR | Zbl
[6] P. Slodowy, Simple Singularities and Simple Algebraic Groups, Lecture Notes in Math., 815, Springer–Verlag, Berlin–Heidelberg–New York, 1980 | DOI | MR | Zbl
[7] A. Weekes, Generators for Coulomb branches of quiver gauge theories, arXiv: 1903.07734
[8] R. Yamagishi, Four-dimensional conical symplectic hypersurfaces, arXiv: 1908.00684