Preserving of the unconditional basis property under non-self-adjoint perturbations of self-adjoint operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 3, pp. 45-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $T$ be a self-adjoint operator in a Hilbert space $H$ with domain $\mathcal D(T)$. Assume that the spectrum of $T$ is confined in the union of disjoint intervals $\Delta_k =[\alpha_{2k-1},\, \alpha_{2k}]$, $k\in \mathbb{Z}$, the lengths of the gaps between which satisfy inequalities \begin{equation*} \alpha_{2k+1}-\alpha_{2k} \geqslant b |\alpha_{2k+1}+\alpha_{2k}|^p\quad \text{ for some }\, b\ge 0,\, p\in[0,1). \end{equation*} Suppose that a linear operator $B$ is $p$-subordinated to $T$, i.e. $\mathcal D(B) \supset\mathcal D(T)$ and $\|Bx\| \leqslant b\,\|Tx\|^p\|x\|^{1-p} +M\|x\| \text{\, for all } x\in \mathcal D(T)$, with some $b\ge0$ and $M\geqslant 0$. Then in the case of $b\ge b$, for large $|k|\geqslant N$, the vertical lines $\gamma_k = \{\lambda\in\mathbb{C}\,| \mathop{\rm Re} \lambda = (\alpha_{2k} + \alpha_{2k+1})/2\}$ lie in the resolvent set of the perturbed operator $A=T+B$. Let $Q_k$ be the Riesz projections associated with the parts of the spectrum of $A$ lying between the lines $\gamma_k$ and $\gamma_{k+1}$ for $|k|\geqslant N$, and let $Q$ be the Riesz projection for the remainder of the spectrum of $A$. Main result is as follows: The system of the invariant subspaces $\{Q_k(H)\}_{|k|\geqslant N}$ together with the invariant subspace $Q(H)$ forms an unconditional basis of subspaces in the space $H$. We also prove a generalization of this theorem to the case where any gap $(\alpha_{2k},\,\alpha_{2k+1})$, $k\in\mathbb{Z}$, may contain a finite number of eigenvalues of $T$.
Keywords: Riesz basis, unconditional basis of subspaces
Mots-clés : non-self-adjoint perturbations.
@article{FAA_2019_53_3_a3,
     author = {A. K. Motovilov and A. A. Shkalikov},
     title = {Preserving of the unconditional basis property under non-self-adjoint perturbations of self-adjoint operators},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {45--60},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a3/}
}
TY  - JOUR
AU  - A. K. Motovilov
AU  - A. A. Shkalikov
TI  - Preserving of the unconditional basis property under non-self-adjoint perturbations of self-adjoint operators
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2019
SP  - 45
EP  - 60
VL  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a3/
LA  - ru
ID  - FAA_2019_53_3_a3
ER  - 
%0 Journal Article
%A A. K. Motovilov
%A A. A. Shkalikov
%T Preserving of the unconditional basis property under non-self-adjoint perturbations of self-adjoint operators
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2019
%P 45-60
%V 53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a3/
%G ru
%F FAA_2019_53_3_a3
A. K. Motovilov; A. A. Shkalikov. Preserving of the unconditional basis property under non-self-adjoint perturbations of self-adjoint operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 3, pp. 45-60. http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a3/

[1] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965

[2] B. Ya. Levin, Tselye funktsii (kurs lektsii), Izd-vo MGU, M., 1971

[3] A. S. Markus, Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Izd-vo Shtiinitsa, Kishinev, 1986

[4] A. S. Markus, V. I. Matsaev, “O skhodimosti razlozhenii po sobstvennym vektoram operatora, blizkogo k samosopryazhennomu”, Matem. issled., 61 (1981), 104–129 | Zbl

[5] A. S. Markus, V. I. Matsaev, “Teoremy sravneniya spektrov lineinykh operatorov i spektralnye asimptotiki”, Trudy MMO, 45 (1982), 133–181 | Zbl

[6] A. K. Motovilov and A. A. Shkalikov, “Unconditional bases of subspaces related to non-self-adjoint perturbations of self-adjoint operators”, Eurasian Math. J., 8:1 (2017), 119–127 | MR | Zbl

[7] A. A. Shkalikov, “Vozmuscheniya samosopryazhennykh i normalnykh operatorov s diskretnym spektrom”, UMN, 71:5(431) (2016), 113–174 | DOI | MR | Zbl

[8] A. A. Shkalikov, “Estimates of meromorphic functions and summability theorems”, Pacific J. Math., 103:2 (1982), 569–582 | DOI | MR | Zbl

[9] A. A. Shkalikov, “Teoremy tauberova tipa o raspredelenii nulei golomorfnykh funktsii”, Matem. sb., 123(165):3 (1984), 317–347 | MR | Zbl