The Asymptotics of the Partition of the Cube into Weyl Simplices, and an Encoding of a Bernoulli Scheme
Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 2, pp. 11-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2019_53_2_a1,
     author = {A. M. Vershik},
     title = {The {Asymptotics} of the {Partition} of the {Cube} into {Weyl} {Simplices,} and an {Encoding} of a {Bernoulli} {Scheme}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {11--31},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_2_a1/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - The Asymptotics of the Partition of the Cube into Weyl Simplices, and an Encoding of a Bernoulli Scheme
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2019
SP  - 11
EP  - 31
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2019_53_2_a1/
LA  - ru
ID  - FAA_2019_53_2_a1
ER  - 
%0 Journal Article
%A A. M. Vershik
%T The Asymptotics of the Partition of the Cube into Weyl Simplices, and an Encoding of a Bernoulli Scheme
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2019
%P 11-31
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2019_53_2_a1/
%G ru
%F FAA_2019_53_2_a1
A. M. Vershik. The Asymptotics of the Partition of the Cube into Weyl Simplices, and an Encoding of a Bernoulli Scheme. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 2, pp. 11-31. http://geodesic.mathdoc.fr/item/FAA_2019_53_2_a1/

[1] S. V. Kerov, A. M. Vershik, “The characters of the infnite symmetric group and probability propetties of the Robinson–Schensted–Knuth algorithm”, SIAM J. Algebraic Discret Methods, 7:1 (1986), 116–124 | DOI | MR | Zbl

[2] P. Sniady, “Robinson–Schensted–Knuth algorithm, jeu de taquin and Kerov–Vershik measures on infite tableaux”, SIAM J. Deiscrete Math., 28:2 (2014), 598–630 | DOI | MR | Zbl

[3] D. Romik, P. Sniady, “Jeu de taquin dynamics on infnite Young tableaux and second class particles”, Ann. Probab., 43:2 (2015), 682–737 | DOI | MR | Zbl

[4] A. M. Vershik, “Tri teoremy o edistvennosti mery Plansherelya s raznykh pozitsii”, Trudy MIAN, “75-VMB”, 2019 (to appear)

[5] R. Stenli, Perechislitelnaya kombinatorika, v. 2, Mir, M., 2005

[6] S. Kerov, G. Olshansky, A. Vershik, “Harmonic analysis on the infinite symmetric group”, Invent. Math., 158:3 (2004), 551–642 | DOI | MR | Zbl

[7] V. A. Rokhlin, “Lektsii po entropiinoi teorii preobrazovanii s invariantnoi meroi”, UMN, 22:5(137) (1967), 3–56 | MR | Zbl

[8] A. M. Vershik, “Teoriya filtratsii podalgebr, standartnost i nezavisimost”, UMN, 72:2(434) (2017), 67–146 | DOI | MR | Zbl

[9] E. Glasner, B. Weiss, “The universal minimal system for the group of homeomorphisms of the Cantor set”, Fund. Math., 176:3 (2003), 277–289 | DOI | MR | Zbl

[10] A. M. Vershik, “Klassifikatsiya izmerimykh funktsii neskolkikh argumentov i invariantno raspredelennye sluchainye matritsy”, Funkts. analiz i ego pril., 36:2 (2002), 12–27 | DOI | MR | Zbl