Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2019_53_2_a1, author = {A. M. Vershik}, title = {The {Asymptotics} of the {Partition} of the {Cube} into {Weyl} {Simplices,} and an {Encoding} of a {Bernoulli} {Scheme}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {11--31}, publisher = {mathdoc}, volume = {53}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_2_a1/} }
TY - JOUR AU - A. M. Vershik TI - The Asymptotics of the Partition of the Cube into Weyl Simplices, and an Encoding of a Bernoulli Scheme JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2019 SP - 11 EP - 31 VL - 53 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2019_53_2_a1/ LA - ru ID - FAA_2019_53_2_a1 ER -
%0 Journal Article %A A. M. Vershik %T The Asymptotics of the Partition of the Cube into Weyl Simplices, and an Encoding of a Bernoulli Scheme %J Funkcionalʹnyj analiz i ego priloženiâ %D 2019 %P 11-31 %V 53 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2019_53_2_a1/ %G ru %F FAA_2019_53_2_a1
A. M. Vershik. The Asymptotics of the Partition of the Cube into Weyl Simplices, and an Encoding of a Bernoulli Scheme. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 2, pp. 11-31. http://geodesic.mathdoc.fr/item/FAA_2019_53_2_a1/
[1] S. V. Kerov, A. M. Vershik, “The characters of the infnite symmetric group and probability propetties of the Robinson–Schensted–Knuth algorithm”, SIAM J. Algebraic Discret Methods, 7:1 (1986), 116–124 | DOI | MR | Zbl
[2] P. Sniady, “Robinson–Schensted–Knuth algorithm, jeu de taquin and Kerov–Vershik measures on infite tableaux”, SIAM J. Deiscrete Math., 28:2 (2014), 598–630 | DOI | MR | Zbl
[3] D. Romik, P. Sniady, “Jeu de taquin dynamics on infnite Young tableaux and second class particles”, Ann. Probab., 43:2 (2015), 682–737 | DOI | MR | Zbl
[4] A. M. Vershik, “Tri teoremy o edistvennosti mery Plansherelya s raznykh pozitsii”, Trudy MIAN, “75-VMB”, 2019 (to appear)
[5] R. Stenli, Perechislitelnaya kombinatorika, v. 2, Mir, M., 2005
[6] S. Kerov, G. Olshansky, A. Vershik, “Harmonic analysis on the infinite symmetric group”, Invent. Math., 158:3 (2004), 551–642 | DOI | MR | Zbl
[7] V. A. Rokhlin, “Lektsii po entropiinoi teorii preobrazovanii s invariantnoi meroi”, UMN, 22:5(137) (1967), 3–56 | MR | Zbl
[8] A. M. Vershik, “Teoriya filtratsii podalgebr, standartnost i nezavisimost”, UMN, 72:2(434) (2017), 67–146 | DOI | MR | Zbl
[9] E. Glasner, B. Weiss, “The universal minimal system for the group of homeomorphisms of the Cantor set”, Fund. Math., 176:3 (2003), 277–289 | DOI | MR | Zbl
[10] A. M. Vershik, “Klassifikatsiya izmerimykh funktsii neskolkikh argumentov i invariantno raspredelennye sluchainye matritsy”, Funkts. analiz i ego pril., 36:2 (2002), 12–27 | DOI | MR | Zbl