Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2019_53_1_a6, author = {B. D. Gel'man}, title = {On the {Borsuk--Ulam} theorem for {Lipschitz} mappings in an infinite-dimensional space}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {79--83}, publisher = {mathdoc}, volume = {53}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a6/} }
TY - JOUR AU - B. D. Gel'man TI - On the Borsuk--Ulam theorem for Lipschitz mappings in an infinite-dimensional space JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2019 SP - 79 EP - 83 VL - 53 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a6/ LA - ru ID - FAA_2019_53_1_a6 ER -
B. D. Gel'man. On the Borsuk--Ulam theorem for Lipschitz mappings in an infinite-dimensional space. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 1, pp. 79-83. http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a6/
[1] J. Dugundji, A. Granas, Fixed Point Theory, PWN, Warszawa, 1982 | MR | Zbl
[2] H. Steinlein, Topological Methods in Nonlinear Analysis, Presses Univ. Montreal, Montreal, 1985, 166–235 | MR
[3] B. D. Gelman, Matem. sb., 193:1 (2002), 83–92 | DOI | MR | Zbl
[4] P. S. Aleksandrov, B. A. Pasynkov, Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR
[5] V. Gurevich, G. Volmen, Teoriya razmernosti, IL, M., 1948
[6] B. D. Gelman, Funkts. analiz i ego pril., 38:4 (2004), 1–5 | DOI | MR | Zbl
[7] B. D. Gelman, Matem. sb., 207:6 (2016), 79–92 | DOI | Zbl