On the Borsuk–Ulam theorem for Lipschitz mappings in an infinite-dimensional space
Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 1, pp. 79-83
Cet article a éte moissonné depuis la source Math-Net.Ru
The present paper is devoted to the study of the solvability and dimension of the solution set of the equation $A (x) = f (x)$ on the sphere of a Hilbert space, in the case when A is a closed surjective operator and f a Lipschitz odd mapping. This theorem is a certain "analogue" of the infinite-dimensional version of the Borsuk-Ulam theorem.
Keywords:
Borsuk–Ulam theorem, surjective operator, contractive mappings, Lipschitz constant, topological dimension.
@article{FAA_2019_53_1_a6,
author = {B. D. Gel'man},
title = {On the {Borsuk{\textendash}Ulam} theorem for {Lipschitz} mappings in an infinite-dimensional space},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {79--83},
year = {2019},
volume = {53},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a6/}
}
B. D. Gel'man. On the Borsuk–Ulam theorem for Lipschitz mappings in an infinite-dimensional space. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 1, pp. 79-83. http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a6/
[1] J. Dugundji, A. Granas, Fixed Point Theory, PWN, Warszawa, 1982 | MR | Zbl
[2] H. Steinlein, Topological Methods in Nonlinear Analysis, Presses Univ. Montreal, Montreal, 1985, 166–235 | MR
[3] B. D. Gelman, Matem. sb., 193:1 (2002), 83–92 | DOI | MR | Zbl
[4] P. S. Aleksandrov, B. A. Pasynkov, Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR
[5] V. Gurevich, G. Volmen, Teoriya razmernosti, IL, M., 1948
[6] B. D. Gelman, Funkts. analiz i ego pril., 38:4 (2004), 1–5 | DOI | MR | Zbl
[7] B. D. Gelman, Matem. sb., 207:6 (2016), 79–92 | DOI | Zbl