On the Borsuk--Ulam theorem for Lipschitz mappings in an infinite-dimensional space
Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 1, pp. 79-83
Voir la notice de l'article provenant de la source Math-Net.Ru
The present paper is devoted to the study of the solvability and dimension of the solution set of the equation $A (x) = f (x)$ on the sphere of a Hilbert space, in the case when A is a closed surjective operator and f a Lipschitz odd mapping. This theorem is a certain "analogue" of the infinite-dimensional version of the Borsuk-Ulam theorem.
Keywords:
Borsuk–Ulam theorem, surjective operator, contractive mappings, Lipschitz constant, topological dimension.
@article{FAA_2019_53_1_a6,
author = {B. D. Gel'man},
title = {On the {Borsuk--Ulam} theorem for {Lipschitz} mappings in an infinite-dimensional space},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {79--83},
publisher = {mathdoc},
volume = {53},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a6/}
}
TY - JOUR AU - B. D. Gel'man TI - On the Borsuk--Ulam theorem for Lipschitz mappings in an infinite-dimensional space JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2019 SP - 79 EP - 83 VL - 53 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a6/ LA - ru ID - FAA_2019_53_1_a6 ER -
B. D. Gel'man. On the Borsuk--Ulam theorem for Lipschitz mappings in an infinite-dimensional space. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 1, pp. 79-83. http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a6/