On H\"{o}lder exponents of the self-similar functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 1, pp. 67-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the class of affine self-similar and continuous on interval $[0;1]$ functions. Formulas for the Hölder exponents are obtained in terms of self-similarity parameters.
Keywords: affine self-similar functions, fractal functions, Hölder exponents.
@article{FAA_2019_53_1_a5,
     author = {I. A. Sheipak},
     title = {On {H\"{o}lder} exponents of the self-similar functions},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {67--78},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a5/}
}
TY  - JOUR
AU  - I. A. Sheipak
TI  - On H\"{o}lder exponents of the self-similar functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2019
SP  - 67
EP  - 78
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a5/
LA  - ru
ID  - FAA_2019_53_1_a5
ER  - 
%0 Journal Article
%A I. A. Sheipak
%T On H\"{o}lder exponents of the self-similar functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2019
%P 67-78
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a5/
%G ru
%F FAA_2019_53_1_a5
I. A. Sheipak. On H\"{o}lder exponents of the self-similar functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 1, pp. 67-78. http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a5/

[1] G. H. Hardy, “Weierstrass's non-differentiable function”, Trans. Amer. Math. Soc., 17:3 (1916), 301–325 | MR | Zbl

[2] A. Zigmund, Trigonometricheskie ryady, 1, Mir, M., 1965

[3] T. Takagi, “A simple example of a continuous function without derivative”, Proc. Phys. Math. Soc. Japan, 1 (1903), 176–177 | Zbl

[4] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, 2, Fizmatlit, M., 2003

[5] P. C. Allaart, K. Kawamura, “The Takagi function: a survey”, Real Anal. Exchange, 37:1 (2011/12), 1–54 | DOI | MR

[6] J. C. Lagarias, “The Takagi function and its properties”, RIMS Kokyuroku Bessatsu B34: Functions and Number Theory and Their Probabilisitic Aspects, RIMS, Kyoto, 2012, 153–189 | MR | Zbl

[7] O. E. Galkin, S. Yu. Galkina, “O svoistvakh funktsii pokazatelnogo klassa Takagi”, Ufimsk. matem. zh., 7:3 (2015), 29–38

[8] I. Daubechies, J. Lagarias, “Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals”, SIAM J. Math. Anal., 23:4 (1992), 1031–1079 | DOI | MR | Zbl

[9] A. S. Cavaretta, W. Dahmen, C. A. Micchelli, “Stationary subdivision”, Mem. Amer. Math. Soc., 93:453 (1991) | MR

[10] V. Yu. Protasov, “Fraktalnye krivye i vspleski”, Izv. RAN. Ser. matem., 70:5 (2006), 123–162 | DOI | MR | Zbl

[11] A. A. Vladimirov, I. A. Sheipak, “Samopodobnye funktsii v prostranstve $L_2[0,1]$ i zadacha Shturma–Liuvillya s singulyarnym indefinitnym vesom”, Matem. sb., 197:11 (2006), 13–30 | DOI | MR | Zbl

[12] I. A. Sheipak, “O konstruktsii i nekotorykh svoistvakh samopodobnykh funktsii v prostranstvakh $L_p[0,1]$”, Matem. zametki, 81:6 (2007), 924–938 | DOI | MR | Zbl

[13] N. V. Gaganov, I. A. Sheipak, “Kriterii ogranichennosti variatsii samopodobnykh funktsii”, Sib. matem. zh., 53:1 (2012), 68–88 | MR | Zbl

[14] P. Singer, P. Zaidler, “Self-affine fractal functions and wavelet series”, J. Math. Anal. Appl., 240:2 (1999), 518–551 | DOI | MR | Zbl

[15] A. Shidfar, K. Sabetfakhri, “On the continuity of van der Waerden's function in the Hölder sense”, Amer. Math. Monthly, 93:5 (1986), 375–376 | MR | Zbl

[16] R. Salem, “On some singular monotone functions which are strictly increasing”, Trans. Amer. Math. Soc., 53 (1943), 427–439 | DOI | MR | Zbl

[17] G. Federer, Geometricheskaya teoriya mery, Nauka, M., 1987

[18] K. Kiesswetter, “Ein einfaches Beispiel für eine Funktion, welche überall stetig und nicht differenzierbar ist”, Math.-Phys. Semesterber, 13 (1966), 216–221 | MR | Zbl

[19] J. R. Kinney, “Note on a singular function of Minkowski”, Proc. Amer. Math. Soc., 11:5 (1960), 788–794 | DOI | MR | Zbl

[20] R. F. Tichy, J. Uitz, “An extension of Minkowski's singular function”, Appl. Math. Lett., 8:5 (1995), 39–46 | DOI | MR | Zbl