Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2019_53_1_a4, author = {E. S. Stuken}, title = {Free algebras of {Hilbert} automorphic forms}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {49--66}, publisher = {mathdoc}, volume = {53}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a4/} }
E. S. Stuken. Free algebras of Hilbert automorphic forms. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 1, pp. 49-66. http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a4/
[1] O. V. Bogopolskii, Vvedenie v teoriyu grupp, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2002 | MR
[2] E. B. Vinberg, “Otsutstvie kristallograficheskikh grupp otrazhenii v prostranstvakh Lobachevskogo bolshoi razmernosti”, Trudy MMO, 47 (1984), 68–102 | Zbl
[3] E. B. Vinberg, “Podgruppy otrazhenii v gruppakh Byanki”, Voprosy teorii grupp i gomologicheskoi algebry, Yaroslavskii gos. un-t, Yaroslavl, 1987, 121–127 | MR
[4] E. B. Vinberg, O. V. Shvartsman, “Kriterii gladkosti v beskonechnosti arifmeticheskogo faktora truby buduschego”, Funkts. analiz i ego pril., 51:1 (2017), 40–59 | DOI | MR | Zbl
[5] E. B. Vinberg, “O nekotorykh svobodnykh algebrakh avtomorfnykh form”, Funkts. analiz i ego pril., 52:4 (2018), 38–61 | DOI | MR | Zbl
[6] Zh. P. Serr, Kurs arifmetiki, Mir, M., 1972 | MR
[7] I. I. Pyatetskii-Shapiro, Geometriya klassicheskikh oblastei i teoriya avtomorfnykh funktsii, Fizmatgiz, M., 1961 | MR
[8] D. Allcock, I. Gal, A. Mark, The Conway–Sloane calculus for $2$-adic lattices, https://arxiv.org/abs/1511.04614 | MR
[9] H. Aoki, T. Ibukiyama, “Simple graded rings of Siegel modular forms, differential operators and Borcherds products”, Internat. J. Math., 16:3 (2005), 249–279 | DOI | MR | Zbl
[10] J. H. Bruinier, “Two applications of the curve lemma for orthogonal groups”, Math. Nachr., 274–275 (2004), 19-31 ; https://arxiv.org/abs/math/0301102 | DOI | MR | Zbl
[11] J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften, 290, Springer-Verlag, Berlin–New York, 1988 | DOI | MR | Zbl
[12] G. van der Geer, Hilbert Modular Surfaces, Springer-Verlag, Berlin–Heidelberg, 1988 | MR | Zbl
[13] V. Gritsenko, K. Hulek, G. K. Sankaran, “The Hirzebruch–Mumford volume for the orthogonal group and applications”, Doc. Math., 12 (2007), 215–241 | DOI | MR | Zbl
[14] K.-B. Gundlach, “Die Bestimmung der Funktionen zur Hilbertschen Modulgruppe des Zahlkorpers $\mathbb{Q}(\sqrt{5})$”, Math. Ann., 152 (1963), 226–256 | DOI | MR | Zbl
[15] K. B. Gundlach, “Die Bestimmung der Funktionen zu einigen Hilbertschen Modulgruppen”, J. Reine Angew. Math., 202 (1965), 109–153 | MR
[16] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Pure and Applied Mathematics, 80, Academic Press, New York–London, 1978 | MR | Zbl
[17] J.-i. Igusa, “On Siegel modular forms of genus two”, Amer. J. Math., 84 (1962), 175–200 | DOI | MR
[18] Y. Kitaoka, Arithmetic of quadratic forms, Cambridge Tracts in Mathematics, 106, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[19] M. Kneser, “Klassenzahlen indefiniter quadratischer Formen in drei order mehr Veränderlichen”, Arch. Math., 7:5 (1956), 323–332 | DOI | MR | Zbl
[20] S. Kudla, “Integrals of Borcherds forms”, Compositio Math., 137:3 (2003), 293–349 | DOI | MR | Zbl
[21] P. Lelong, “Fonctions entieres (n variables) et fonctions plurisousharmoniques d'ordre fini dans $\mathbb{C}^n$”, J. Analyse Math., 12 (1964), 365–407 | DOI | MR | Zbl
[22] C. L. Siegel, “On the theory of indefinite quadratic forms”, Ann. of Math., 45:3 (1944), 577–622 | DOI | MR | Zbl
[23] E. B. Vinberg, “Some free algebras of automorphic forms on symmetric domains of type IV”, Transform. Groups, 15:3 (2010), 701–741 | DOI | MR | Zbl