Degrees of cohomology classes of multisingularities in Hurwitz spaces of rational functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 1, pp. 16-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2019_53_1_a2,
     author = {B. S. Bychkov},
     title = {Degrees of cohomology classes of multisingularities in {Hurwitz} spaces of rational functions},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {16--30},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a2/}
}
TY  - JOUR
AU  - B. S. Bychkov
TI  - Degrees of cohomology classes of multisingularities in Hurwitz spaces of rational functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2019
SP  - 16
EP  - 30
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a2/
LA  - ru
ID  - FAA_2019_53_1_a2
ER  - 
%0 Journal Article
%A B. S. Bychkov
%T Degrees of cohomology classes of multisingularities in Hurwitz spaces of rational functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2019
%P 16-30
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a2/
%G ru
%F FAA_2019_53_1_a2
B. S. Bychkov. Degrees of cohomology classes of multisingularities in Hurwitz spaces of rational functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 1, pp. 16-30. http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a2/

[1] V. I. Arnold, “Topologicheskaya klassifikatsiya kompleksnykh trigonometricheskikh mnogochlenov i kombinatorika grafov s odinakovym chislom vershin i reber”, Funkts. analiz i ego pril., 30:1 (1996), 1–17 | DOI | MR | Zbl

[2] R. Cavalieri, P. Johnson, H. Markwig, “Chamber structure of double Hurwitz numbers”, Discret. Math. Theor. Comput., Sci. Proc., AN, Association Discrete Math. Theor. Somput. Sci., Nancy, 2010, 227–238 | MR | Zbl

[3] T. Ekedahl, S. K. Lando, M. Shapiro, A. Vainshtein, “Hurwitz numbers and intersections on moduli spaces of curves”, Invent. Math., 146:2 (2001), 297–327 | DOI | MR | Zbl

[4] V. Fulton, Teoriya peresechenii, Mir, M., 1994

[5] I. Goulden, D. Jackson, R. Vakil, “Towards the geometry of double Hurwitz numbers”, Adv. Math., 198:1 (2005), 43–92 | DOI | MR | Zbl

[6] M. E. Kazaryan, “Otnositelnaya teoriya Morsa odnomernykh rassloenii i tsiklicheskie gomologii”, Funkts. analiz i ego pril., 31:1 (1997), 20–31 | DOI | MR | Zbl

[7] M. E. Kazaryan, S. K. Lando, “K teorii peresechenii na prostranstvakh Gurvitsa”, Izv. RAN, Ser. matem., 68:5 (2004), 91–122 | DOI | MR | Zbl

[8] M. Kazarian, S. Lando, D. Zvonkine, Topological recursion for the genus zero descendant Hurwitz potential (ne opublikovano)

[9] S. K. Lando, “Razvetvlennye nakrytiya dvumernoi sfery i teoriya peresechenii v prostranstvakh meromorfnykh funktsii na algebraicheskikh krivykh”, UMN, 57:3 (2002), 29–98 | DOI | MR | Zbl

[10] S. K. Lando, D. Zvonkin, “O kratnostyakh otobrazheniya Lyashko–Loiengi na stratakh diskriminanta”, Funkts. analiz i ego pril., 33:3 (1999), 21–34 | DOI | MR | Zbl

[11] S. Lando, D. Zvonkine, “Counting ramified coverings and intersection theory on spaces of rational functions I”, Mosc. Math. J., 7:1 (2007), 85–107 | DOI | MR | Zbl

[12] M. Mulase, S. Shadrin, L. Spitz, “The spectral curve and the Schrödinger equation of double Hurwitz numbers and higher spin structures”, Commun. Number Theory Phys., 7:1 (2013), 125–143 | DOI | MR | Zbl

[13] A. Okounkov, “Toda equations for Hurwitz numbers”, Math. Res. Lett., 7:4 (2000), 447–453 | DOI | MR | Zbl

[14] S. Shadrin, M. Shapiro, A. Vainshtein, “Chamber behavior of double Hurwitz numbers in genus $0$”, Adv. Math., 217:1 (2007), 79–96 | DOI | MR

[15] G. Wiseman, “Set maps, umbral calculus, and the chromatic polynomial”, Discrete Math., 308:16 (2008), 3551–3564 | DOI | MR | Zbl

[16] E. Witten, “Two-dimensional gravity and intersection theory on moduli spaces”, Surveys in Differential Geometry, 1 (1991), 243–310 | DOI | MR | Zbl