Integrable Systems of Algebraic Origin and Separation of Variables
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 94-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

A plane algebraic curve whose Newton polygon contains $d$ integer points is completely determined by $d$ points in the plane through which it passes. Its coefficients regarded as functions of sets of coordinates of these points commute with respect to the Poisson bracket corresponding to the pair of coordinates of any of these points. This observation was made by Babelon and Talon in 2002. A result more general in some respects and less general in others was obtained by Enriquez and Rubtsov in 2003. As a particular case, we obtain that the coefficients of the Lagrange interpolation polynomial commute with respect to a Poisson bracket on the set of interpolation data. We prove a general assertion in the framework of the method of separation of variables which explains all these facts. This assertion is as follows: Any (nondegenerate) system of $n$ smooth functions in $n+2$ variables generates an integrable system with $n$ degrees of freedom. In addition to those mentioned above, the examples include a version of the Hermite interpolation polynomial and systems related to Weierstrass models of curves (= miniversal deformations of singularities). The integrable system related to the Lagrange interpolation polynomial has recently arisen as a reduction of rank-2 Hitchin systems (and, thereby, it gives particular solutions of such systems; see the author's paper in Doklady Mathematics), and it is also closely related to the integrable systems on universal bundles of symmetric powers of curves introduced by Buchstaber and Mikhailov in 2017.
Keywords: plane algebraic curve, integrable system, the method of separation of variables, hyperelliptic Hitchin systems
Mots-clés : Poisson bracket, Lagrange interpolation polynomial, quantum analogue.
@article{FAA_2018_52_4_a7,
     author = {O. K. Sheinman},
     title = {Integrable {Systems} of {Algebraic} {Origin} and {Separation} of {Variables}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {94--98},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a7/}
}
TY  - JOUR
AU  - O. K. Sheinman
TI  - Integrable Systems of Algebraic Origin and Separation of Variables
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 94
EP  - 98
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a7/
LA  - ru
ID  - FAA_2018_52_4_a7
ER  - 
%0 Journal Article
%A O. K. Sheinman
%T Integrable Systems of Algebraic Origin and Separation of Variables
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 94-98
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a7/
%G ru
%F FAA_2018_52_4_a7
O. K. Sheinman. Integrable Systems of Algebraic Origin and Separation of Variables. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 94-98. http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a7/

[1] K. Yakobi, Lektsii po dinamike, ONTI, M.–L., 1936

[2] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, Dynamical Systems IV, Encyclopaedia Math. Sci., 4, Springer-Verlag, Berlin–Heidelberg, 1990, 177–332 | DOI | MR

[3] E. K. Sklyanin, Prog. Theor. Phys. Suppl., 118:1 (1995), 35-60 ; arXiv: solv-int/9504001 | DOI | Zbl

[4] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | MR

[5] S. P. Novikov, I. A. Taimanov, Sovremennye geometricheskie struktury i polya, MTsNMO, M., 2005

[6] V. M. Bukhshtaber, A. V. Mikhailov, Funkts. analiz i ego pril., 51:1 (2017), 4–27 | DOI | MR | Zbl

[7] V. M. Bukhshtaber, A. V. Mikhailov, UMN, 73:6 (2018) (to appear) | MR

[8] V. M. Buchstaber, V. Z. Enolski, D. V. Leykin, Multi-dimensional sigma-functions,, arXiv: 1208.0990

[9] O. Babelon, D. Bernard, M. Talon, Introduction to Classical Integrable systems, Cambridge University Press, Cambridge, 2003 | MR | Zbl

[10] O. Babelon, M. Talon, Phys. Lett. A, 312:1–2 (2003), 71–77 ; arXiv: hep-th/0209071 | DOI | MR | Zbl

[11] B. Enriquez, V. Rubtsov, Duke Math. J., 119:2 (2003), 197–219 | DOI | MR | Zbl

[12] D. Talalaev, Riemann bilinear form and Poisson structure in Hitchin-type systems, ITEP-TH-22/03, ITEF, 2003

[13] K. Takasaki, Superintegrability in Classical and Quantum Systems, CRM Proc. Lecture Notes, 17, Amer. Math. Soc., Providence, RI, 2004; arXiv: nlin/0211021

[14] O. K. Sheinman, Dokl. RAN. Ser. matem., 479:3 (2018), 254–256 | DOI | Zbl

[15] O. K. Sheinman, Some reductions of rank 2 and genera 2 and 3 Hitchin systems,, arXiv: 1709.06803

[16] O. K. Sheinman, Spectral curves of the hyperelliptic Hitchin systems,, arXiv: 1806.10178