Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2018_52_4_a7, author = {O. K. Sheinman}, title = {Integrable {Systems} of {Algebraic} {Origin} and {Separation} of {Variables}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {94--98}, publisher = {mathdoc}, volume = {52}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a7/} }
O. K. Sheinman. Integrable Systems of Algebraic Origin and Separation of Variables. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 94-98. http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a7/
[1] K. Yakobi, Lektsii po dinamike, ONTI, M.–L., 1936
[2] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, Dynamical Systems IV, Encyclopaedia Math. Sci., 4, Springer-Verlag, Berlin–Heidelberg, 1990, 177–332 | DOI | MR
[3] E. K. Sklyanin, Prog. Theor. Phys. Suppl., 118:1 (1995), 35-60 ; arXiv: solv-int/9504001 | DOI | Zbl
[4] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | MR
[5] S. P. Novikov, I. A. Taimanov, Sovremennye geometricheskie struktury i polya, MTsNMO, M., 2005
[6] V. M. Bukhshtaber, A. V. Mikhailov, Funkts. analiz i ego pril., 51:1 (2017), 4–27 | DOI | MR | Zbl
[7] V. M. Bukhshtaber, A. V. Mikhailov, UMN, 73:6 (2018) (to appear) | MR
[8] V. M. Buchstaber, V. Z. Enolski, D. V. Leykin, Multi-dimensional sigma-functions,, arXiv: 1208.0990
[9] O. Babelon, D. Bernard, M. Talon, Introduction to Classical Integrable systems, Cambridge University Press, Cambridge, 2003 | MR | Zbl
[10] O. Babelon, M. Talon, Phys. Lett. A, 312:1–2 (2003), 71–77 ; arXiv: hep-th/0209071 | DOI | MR | Zbl
[11] B. Enriquez, V. Rubtsov, Duke Math. J., 119:2 (2003), 197–219 | DOI | MR | Zbl
[12] D. Talalaev, Riemann bilinear form and Poisson structure in Hitchin-type systems, ITEP-TH-22/03, ITEF, 2003
[13] K. Takasaki, Superintegrability in Classical and Quantum Systems, CRM Proc. Lecture Notes, 17, Amer. Math. Soc., Providence, RI, 2004; arXiv: nlin/0211021
[14] O. K. Sheinman, Dokl. RAN. Ser. matem., 479:3 (2018), 254–256 | DOI | Zbl
[15] O. K. Sheinman, Some reductions of rank 2 and genera 2 and 3 Hitchin systems,, arXiv: 1709.06803
[16] O. K. Sheinman, Spectral curves of the hyperelliptic Hitchin systems,, arXiv: 1806.10178