The Topological Support of the z-Measures on the Thoma Simplex
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 86-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Thoma simplex $\Omega$ is an infinite-dimensional space, a kind of dual object to the infinite symmetric group. The z-measures are probability measures on $\Omega$ depending on three continuous parameters. One of them is the parameter of the Jack symmetric functions, and in the limit as it goes to 0, the z-measures turn into the Poisson–Dirichlet distributions. The definition of the z-measures is somewhat implicit. We show that the topological support of any nondegenerate z-measure is the whole space $\Omega$.
Keywords: z-measure, topological support, symmetric function.
Mots-clés : Poisson-Dirichlet distribution
@article{FAA_2018_52_4_a5,
     author = {G. I. Olshanskii},
     title = {The {Topological} {Support} of the {z-Measures} on the {Thoma} {Simplex}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {86--88},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a5/}
}
TY  - JOUR
AU  - G. I. Olshanskii
TI  - The Topological Support of the z-Measures on the Thoma Simplex
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 86
EP  - 88
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a5/
LA  - ru
ID  - FAA_2018_52_4_a5
ER  - 
%0 Journal Article
%A G. I. Olshanskii
%T The Topological Support of the z-Measures on the Thoma Simplex
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 86-88
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a5/
%G ru
%F FAA_2018_52_4_a5
G. I. Olshanskii. The Topological Support of the z-Measures on the Thoma Simplex. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 86-88. http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a5/

[1] A. Borodin, G. Olshanski, Math. Res. Lett., 5:6 (1998), 799–816 | DOI | MR | Zbl

[2] A. Borodin, G. Olshanski, Comm. Math. Phys., 211:2 (2000), 335–358 | DOI | MR | Zbl

[3] A. Borodin, G. Olshanski, European J. Combin., 26:6 (2005), 795–834 | DOI | MR | Zbl

[4] A. Borodin, G. Olshanski, Probab. Theory Related Fields, 144:1–2 (2009), 281–318 | DOI | MR | Zbl

[5] S. N. Ethier, T. G. Kurtz, Markov Processes. Characterization and Convergence, John Wiley Sons, New York, 1986 | MR | Zbl

[6] S. Feng, The Poisson–Dirichlet Distribution and Related Topics. Models and Asymptotic Behaviors, Springer-Verlag, Heidelberg, 2010 | MR | Zbl

[7] S. V. Kerov, Funkts. analiz i ego prilozh., 34:1 (2000), 51–64 | DOI | MR | Zbl

[8] S. Kerov, G. Olshanski, A. Vershik, C. R. Acad. Sci. Paris Sér. I, 316:8 (1993), 773–778 | MR | Zbl

[9] S. Kerov, G. Olshanski, A. Vershik, Invent. Math., 158:3 (2004), 551–642 | DOI | MR | Zbl

[10] S. Korotkikh, Transition functions of diffusion processes with the Jack parameter on the Thoma simplex,, arXiv: 1806.07454

[11] G. Olshanski, Int. Math. Res. Notices, 2010:6 (2010), 1102–1166 | MR | Zbl

[12] E. Strahov, J. Algebra, 323:2 (2010), 349–370 | DOI | MR | Zbl