The Topological Support of the z-Measures on the Thoma Simplex
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 86-88
Voir la notice de l'article provenant de la source Math-Net.Ru
The Thoma simplex $\Omega$ is an infinite-dimensional space, a kind of dual object to the infinite symmetric group. The z-measures are probability measures on $\Omega$ depending on three continuous parameters. One of them is the parameter of the Jack symmetric functions, and in the limit as it goes to 0, the z-measures turn into the Poisson–Dirichlet distributions. The definition of the z-measures is somewhat implicit. We show that the topological support of any nondegenerate z-measure is the whole space $\Omega$.
Keywords:
z-measure, topological support, symmetric function.
Mots-clés : Poisson-Dirichlet distribution
Mots-clés : Poisson-Dirichlet distribution
@article{FAA_2018_52_4_a5,
author = {G. I. Olshanskii},
title = {The {Topological} {Support} of the {z-Measures} on the {Thoma} {Simplex}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {86--88},
publisher = {mathdoc},
volume = {52},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a5/}
}
G. I. Olshanskii. The Topological Support of the z-Measures on the Thoma Simplex. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 86-88. http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a5/