Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2018_52_4_a5, author = {G. I. Olshanskii}, title = {The {Topological} {Support} of the {z-Measures} on the {Thoma} {Simplex}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {86--88}, publisher = {mathdoc}, volume = {52}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a5/} }
G. I. Olshanskii. The Topological Support of the z-Measures on the Thoma Simplex. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 86-88. http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a5/
[1] A. Borodin, G. Olshanski, Math. Res. Lett., 5:6 (1998), 799–816 | DOI | MR | Zbl
[2] A. Borodin, G. Olshanski, Comm. Math. Phys., 211:2 (2000), 335–358 | DOI | MR | Zbl
[3] A. Borodin, G. Olshanski, European J. Combin., 26:6 (2005), 795–834 | DOI | MR | Zbl
[4] A. Borodin, G. Olshanski, Probab. Theory Related Fields, 144:1–2 (2009), 281–318 | DOI | MR | Zbl
[5] S. N. Ethier, T. G. Kurtz, Markov Processes. Characterization and Convergence, John Wiley Sons, New York, 1986 | MR | Zbl
[6] S. Feng, The Poisson–Dirichlet Distribution and Related Topics. Models and Asymptotic Behaviors, Springer-Verlag, Heidelberg, 2010 | MR | Zbl
[7] S. V. Kerov, Funkts. analiz i ego prilozh., 34:1 (2000), 51–64 | DOI | MR | Zbl
[8] S. Kerov, G. Olshanski, A. Vershik, C. R. Acad. Sci. Paris Sér. I, 316:8 (1993), 773–778 | MR | Zbl
[9] S. Kerov, G. Olshanski, A. Vershik, Invent. Math., 158:3 (2004), 551–642 | DOI | MR | Zbl
[10] S. Korotkikh, Transition functions of diffusion processes with the Jack parameter on the Thoma simplex,, arXiv: 1806.07454
[11] G. Olshanski, Int. Math. Res. Notices, 2010:6 (2010), 1102–1166 | MR | Zbl
[12] E. Strahov, J. Algebra, 323:2 (2010), 349–370 | DOI | MR | Zbl