The Universal Euler Characteristic of $V$-Manifolds
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 72-85

Voir la notice de l'article provenant de la source Math-Net.Ru

The Euler characteristic is the only additive topological invariant for spaces of certain sort, in particular, for manifolds with certain finiteness properties. A generalization of the notion of a manifold is the notion of a $V$-manifold. We discuss a universal additive topological invariant of $V$-manifolds, the universal Euler characteristic. It takes values in the ring freely generated (as a ${\mathbb Z}$-module) by isomorphism classes of finite groups. We also consider the universal Euler characteristic on the class of locally closed equivariant unions of cells in equivariant $CW$-complexes. We show that it is a universal additive invariant satisfying a certain “induction relation.” We give Macdonald-type identities for the universal Euler characteristic for $V$-manifolds and for cell complexes of the described type.
Mots-clés : finite group actions
Keywords: $V$-manifold, orbifold, additive topological invariant, lambda-ring, Macdonald identity.
@article{FAA_2018_52_4_a4,
     author = {S. M. Gusein-Zade and I. Luengo and A. Melle-Hern\'andez},
     title = {The {Universal} {Euler} {Characteristic} of $V${-Manifolds}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {72--85},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a4/}
}
TY  - JOUR
AU  - S. M. Gusein-Zade
AU  - I. Luengo
AU  - A. Melle-Hernández
TI  - The Universal Euler Characteristic of $V$-Manifolds
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 72
EP  - 85
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a4/
LA  - ru
ID  - FAA_2018_52_4_a4
ER  - 
%0 Journal Article
%A S. M. Gusein-Zade
%A I. Luengo
%A A. Melle-Hernández
%T The Universal Euler Characteristic of $V$-Manifolds
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 72-85
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a4/
%G ru
%F FAA_2018_52_4_a4
S. M. Gusein-Zade; I. Luengo; A. Melle-Hernández. The Universal Euler Characteristic of $V$-Manifolds. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 72-85. http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a4/