Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2018_52_4_a4, author = {S. M. Gusein-Zade and I. Luengo and A. Melle-Hern\'andez}, title = {The {Universal} {Euler} {Characteristic} of $V${-Manifolds}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {72--85}, publisher = {mathdoc}, volume = {52}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a4/} }
TY - JOUR AU - S. M. Gusein-Zade AU - I. Luengo AU - A. Melle-Hernández TI - The Universal Euler Characteristic of $V$-Manifolds JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2018 SP - 72 EP - 85 VL - 52 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a4/ LA - ru ID - FAA_2018_52_4_a4 ER -
S. M. Gusein-Zade; I. Luengo; A. Melle-Hernández. The Universal Euler Characteristic of $V$-Manifolds. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 72-85. http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a4/
[1] M. Atiyah, G. Segal, “On equivariant Euler characteristics”, J. Geom. Phys., 6:4 (1989), 671–677 | DOI | MR | Zbl
[2] J. Bryan, J. Fulman, “Orbifold Euler characteristics and the number of commuting $m$-tuples in the symmetric groups”, Ann. Comb., 2:1 (1998), 1–6 | DOI | MR | Zbl
[3] W. Chen, Y. Ruan, “Orbifold Gromov–Witten theory”, Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemp. Math., 310, Amer. Math. Soc., Providence, RI, 2002, 25–85 | DOI | MR | Zbl
[4] L. Dixon, J. Harvey, C. Vafa, E. Witten, “Strings on orbifolds”, Nuclear Phys. B, 261:4 (1985), 678–686 | DOI | MR
[5] L. Dixon, J. Harvey, C. Vafa, E. Witten, “Strings on orbifolds. II”, Nuclear Phys. B, 274:2 (1986), 285–314 | DOI | MR
[6] M. R. Dixon, T. A. Fournelle, “The indecomposability of certain wreath products indexed by partially ordered sets”, Arch. Math., 43 (1984), 193–207 | DOI | MR | Zbl
[7] C. Farsi, Ch. Seaton, “Generalized orbifold Euler characteristics for general orbifolds and wreath products”, Algebr. Geom. Topol., 11:1 (2011), 523–551 | DOI | MR | Zbl
[8] S. M. Gusein-Zade, “Ekvivariantnye analogi eilerovoi kharakteristiki i formuly tipa Makdonalda”, UMN, 72:1(433) (2017), 3–36 | DOI | MR | Zbl
[9] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “A power structure over the Grothendieck ring of varieties”, Math. Res. Lett., 11:1 (2004), 49–57 | DOI | MR | Zbl
[10] S. M. Gusein-Zade, I. Luengo, A. Mele-Ernandez, “O stepennoi strukture nad koltsom Grotendika mnogoobrazii i ee prilozheniyakh”, Trudy MIAN, 258 (2007), 58–69 | Zbl
[11] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “Equivariant versions of higher order orbifold Euler characteristics”, Mosc. Math. J., 16:4 (2016), 751–765 | DOI | MR | Zbl
[12] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, Grothendieck ring of varieties with finite groups actions,, arXiv: 1706.00918
[13] F. Hirzebruch, T. Höfer, “On the Euler number of an orbifold”, Math. Ann., 286:1–3 (1990), 255–260 | DOI | MR | Zbl
[14] D. Knutson, $\lambda$-Rings and the Representation Theory of the Symmetric Group, Lecture Notes in Math., 308, Springer-Verlag, Berlin–New York, 1973 | DOI | MR | Zbl
[15] P. M. Neumann, “On the structure of standard wreath products of groups”, Math. Z., 84 (1964), 343–373 | DOI | MR | Zbl
[16] I. Satake, “On a generalization of the notion of manifold”, Proc. Nat. Acad. Sci. U.S.A., 42 (1956), 359–363 | DOI | MR | Zbl
[17] I. Satake, “The Gauss–Bonnet theorem for $V$-manifolds”, J. Math. Soc. Japan, 9 (1957), 464–492 | DOI | MR | Zbl
[18] H. Tamanoi, “Generalized orbifold Euler characteristic of symmetric products and equivariant Morava $K$-theory”, Algebr. Geom. Topol., 1 (2001), 115–141 | DOI | MR | Zbl
[19] T. tom Dieck, Transformation Groups, De Gruyter Studies in Math., 8, Walter de Gruyter Co., Berlin, 1987 | MR | Zbl
[20] C. E. Watts, “On the Euler characteristic of polyhedra”, Proc. Amer. Math. Soc., 13 (1962), 304–306 | DOI | MR | Zbl