The Universal Euler Characteristic of $V$-Manifolds
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 72-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Euler characteristic is the only additive topological invariant for spaces of certain sort, in particular, for manifolds with certain finiteness properties. A generalization of the notion of a manifold is the notion of a $V$-manifold. We discuss a universal additive topological invariant of $V$-manifolds, the universal Euler characteristic. It takes values in the ring freely generated (as a ${\mathbb Z}$-module) by isomorphism classes of finite groups. We also consider the universal Euler characteristic on the class of locally closed equivariant unions of cells in equivariant $CW$-complexes. We show that it is a universal additive invariant satisfying a certain “induction relation.” We give Macdonald-type identities for the universal Euler characteristic for $V$-manifolds and for cell complexes of the described type.
Mots-clés : finite group actions
Keywords: $V$-manifold, orbifold, additive topological invariant, lambda-ring, Macdonald identity.
@article{FAA_2018_52_4_a4,
     author = {S. M. Gusein-Zade and I. Luengo and A. Melle-Hern\'andez},
     title = {The {Universal} {Euler} {Characteristic} of $V${-Manifolds}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {72--85},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a4/}
}
TY  - JOUR
AU  - S. M. Gusein-Zade
AU  - I. Luengo
AU  - A. Melle-Hernández
TI  - The Universal Euler Characteristic of $V$-Manifolds
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 72
EP  - 85
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a4/
LA  - ru
ID  - FAA_2018_52_4_a4
ER  - 
%0 Journal Article
%A S. M. Gusein-Zade
%A I. Luengo
%A A. Melle-Hernández
%T The Universal Euler Characteristic of $V$-Manifolds
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 72-85
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a4/
%G ru
%F FAA_2018_52_4_a4
S. M. Gusein-Zade; I. Luengo; A. Melle-Hernández. The Universal Euler Characteristic of $V$-Manifolds. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 72-85. http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a4/

[1] M. Atiyah, G. Segal, “On equivariant Euler characteristics”, J. Geom. Phys., 6:4 (1989), 671–677 | DOI | MR | Zbl

[2] J. Bryan, J. Fulman, “Orbifold Euler characteristics and the number of commuting $m$-tuples in the symmetric groups”, Ann. Comb., 2:1 (1998), 1–6 | DOI | MR | Zbl

[3] W. Chen, Y. Ruan, “Orbifold Gromov–Witten theory”, Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemp. Math., 310, Amer. Math. Soc., Providence, RI, 2002, 25–85 | DOI | MR | Zbl

[4] L. Dixon, J. Harvey, C. Vafa, E. Witten, “Strings on orbifolds”, Nuclear Phys. B, 261:4 (1985), 678–686 | DOI | MR

[5] L. Dixon, J. Harvey, C. Vafa, E. Witten, “Strings on orbifolds. II”, Nuclear Phys. B, 274:2 (1986), 285–314 | DOI | MR

[6] M. R. Dixon, T. A. Fournelle, “The indecomposability of certain wreath products indexed by partially ordered sets”, Arch. Math., 43 (1984), 193–207 | DOI | MR | Zbl

[7] C. Farsi, Ch. Seaton, “Generalized orbifold Euler characteristics for general orbifolds and wreath products”, Algebr. Geom. Topol., 11:1 (2011), 523–551 | DOI | MR | Zbl

[8] S. M. Gusein-Zade, “Ekvivariantnye analogi eilerovoi kharakteristiki i formuly tipa Makdonalda”, UMN, 72:1(433) (2017), 3–36 | DOI | MR | Zbl

[9] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “A power structure over the Grothendieck ring of varieties”, Math. Res. Lett., 11:1 (2004), 49–57 | DOI | MR | Zbl

[10] S. M. Gusein-Zade, I. Luengo, A. Mele-Ernandez, “O stepennoi strukture nad koltsom Grotendika mnogoobrazii i ee prilozheniyakh”, Trudy MIAN, 258 (2007), 58–69 | Zbl

[11] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “Equivariant versions of higher order orbifold Euler characteristics”, Mosc. Math. J., 16:4 (2016), 751–765 | DOI | MR | Zbl

[12] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, Grothendieck ring of varieties with finite groups actions,, arXiv: 1706.00918

[13] F. Hirzebruch, T. Höfer, “On the Euler number of an orbifold”, Math. Ann., 286:1–3 (1990), 255–260 | DOI | MR | Zbl

[14] D. Knutson, $\lambda$-Rings and the Representation Theory of the Symmetric Group, Lecture Notes in Math., 308, Springer-Verlag, Berlin–New York, 1973 | DOI | MR | Zbl

[15] P. M. Neumann, “On the structure of standard wreath products of groups”, Math. Z., 84 (1964), 343–373 | DOI | MR | Zbl

[16] I. Satake, “On a generalization of the notion of manifold”, Proc. Nat. Acad. Sci. U.S.A., 42 (1956), 359–363 | DOI | MR | Zbl

[17] I. Satake, “The Gauss–Bonnet theorem for $V$-manifolds”, J. Math. Soc. Japan, 9 (1957), 464–492 | DOI | MR | Zbl

[18] H. Tamanoi, “Generalized orbifold Euler characteristic of symmetric products and equivariant Morava $K$-theory”, Algebr. Geom. Topol., 1 (2001), 115–141 | DOI | MR | Zbl

[19] T. tom Dieck, Transformation Groups, De Gruyter Studies in Math., 8, Walter de Gruyter Co., Berlin, 1987 | MR | Zbl

[20] C. E. Watts, “On the Euler characteristic of polyhedra”, Proc. Amer. Math. Soc., 13 (1962), 304–306 | DOI | MR | Zbl