The Universal Euler Characteristic of $V$-Manifolds
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 72-85
Voir la notice de l'article provenant de la source Math-Net.Ru
The Euler characteristic is the only additive topological invariant for spaces of certain sort, in particular, for manifolds with certain finiteness properties. A generalization of the notion of a manifold is the notion of a $V$-manifold. We discuss a universal additive topological invariant of $V$-manifolds, the universal Euler characteristic. It takes values in the ring freely generated (as a ${\mathbb Z}$-module) by isomorphism classes of finite groups. We also consider the universal Euler characteristic on the class of locally closed equivariant unions of cells in equivariant $CW$-complexes. We show that it is a universal additive invariant satisfying a certain “induction relation.” We give Macdonald-type identities for the universal Euler characteristic for $V$-manifolds and for cell complexes of the described type.
Mots-clés :
finite group actions
Keywords: $V$-manifold, orbifold, additive topological invariant, lambda-ring, Macdonald identity.
Keywords: $V$-manifold, orbifold, additive topological invariant, lambda-ring, Macdonald identity.
@article{FAA_2018_52_4_a4,
author = {S. M. Gusein-Zade and I. Luengo and A. Melle-Hern\'andez},
title = {The {Universal} {Euler} {Characteristic} of $V${-Manifolds}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {72--85},
publisher = {mathdoc},
volume = {52},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a4/}
}
TY - JOUR AU - S. M. Gusein-Zade AU - I. Luengo AU - A. Melle-Hernández TI - The Universal Euler Characteristic of $V$-Manifolds JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2018 SP - 72 EP - 85 VL - 52 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a4/ LA - ru ID - FAA_2018_52_4_a4 ER -
S. M. Gusein-Zade; I. Luengo; A. Melle-Hernández. The Universal Euler Characteristic of $V$-Manifolds. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 72-85. http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a4/