Cardinality of $\Lambda$ Determines the Geometry of $\mathsf{B}_{\ell_\infty(\Lambda)}$ and $\mathsf{B}_{\ell_\infty(\Lambda)^*}$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 62-71

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the geometry of the unit ball of $\ell_\infty(\Lambda)$ and of the dual space, proving, among other things, that $\Lambda$ is countable if and only if $1$ is an exposed point of $\mathsf{B}_{\ell_\infty(\Lambda)}$. On the other hand, we prove that $\Lambda$ is finite if and only if the $\delta_\lambda$ are the only functionals taking the value $1$ at a canonical element and vanishing at all other canonical elements. We also show that the restrictions of evaluation functionals to a $2$-dimensional subspace are not necessarily extreme points of the dual of that subspace. Finally, we prove that if $\Lambda$ is uncountable, then the face of $\mathsf{B}_{\ell_\infty(\Lambda)^*}$ consisting of norm $1$ functionals attaining their norm at the constant function $1$ has empty interior relative to $\mathsf{S}_{\ell_\infty(\Lambda)^*}$.
Keywords: bounded functions, extremal structure.
@article{FAA_2018_52_4_a3,
     author = {F. J. Garcia-Pacheco},
     title = {Cardinality of $\Lambda$ {Determines} the {Geometry} of $\mathsf{B}_{\ell_\infty(\Lambda)}$ and $\mathsf{B}_{\ell_\infty(\Lambda)^*}$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {62--71},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a3/}
}
TY  - JOUR
AU  - F. J. Garcia-Pacheco
TI  - Cardinality of $\Lambda$ Determines the Geometry of $\mathsf{B}_{\ell_\infty(\Lambda)}$ and $\mathsf{B}_{\ell_\infty(\Lambda)^*}$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 62
EP  - 71
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a3/
LA  - ru
ID  - FAA_2018_52_4_a3
ER  - 
%0 Journal Article
%A F. J. Garcia-Pacheco
%T Cardinality of $\Lambda$ Determines the Geometry of $\mathsf{B}_{\ell_\infty(\Lambda)}$ and $\mathsf{B}_{\ell_\infty(\Lambda)^*}$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 62-71
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a3/
%G ru
%F FAA_2018_52_4_a3
F. J. Garcia-Pacheco. Cardinality of $\Lambda$ Determines the Geometry of $\mathsf{B}_{\ell_\infty(\Lambda)}$ and $\mathsf{B}_{\ell_\infty(\Lambda)^*}$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 62-71. http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a3/