Mots-clés : filtrations
@article{FAA_2018_52_4_a1,
author = {A. M. Vershik and P. B. Zatitskii},
title = {Combinatorial {Invariants} of {Metric} {Filtrations} and {Automorphisms;} the {Universal} {Adic} {Graph}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {23--37},
year = {2018},
volume = {52},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a1/}
}
TY - JOUR AU - A. M. Vershik AU - P. B. Zatitskii TI - Combinatorial Invariants of Metric Filtrations and Automorphisms; the Universal Adic Graph JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2018 SP - 23 EP - 37 VL - 52 IS - 4 UR - http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a1/ LA - ru ID - FAA_2018_52_4_a1 ER -
A. M. Vershik; P. B. Zatitskii. Combinatorial Invariants of Metric Filtrations and Automorphisms; the Universal Adic Graph. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 23-37. http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a1/
[1] A. M. Vershik, “Teorema o lakunarnom izomorfizme monotonnykh posledovatelnostei razbienii”, Funkts. analiz i ego pril., 2:3 (1968), 17–21 | MR | Zbl
[2] A. M. Vershik, “Ubyvayuschie posledovatelnosti izmerimykh razbienii i ikh primeneniya”, Dokl. AN SSSR, 193:4 (1970), 748–751 | Zbl
[3] A. M. Vershik, “Kontinuum poparno neizomorfnykh diadicheskikh posledovatelnostei”, Funkts. analiz i ego pril., 5:3 (1971), 16–18 | DOI | MR
[4] A. M. Vershik, “Metricheskii invariant avtomorfizmov prostranstva s meroi, svyazannyi s ravnomernoi approksimatsiei i posledovatelnostyami razbienii”, Dokl. AN SSSR, 209:1 (1973), 15–18 | Zbl
[5] A. M. Vershik, “Chetyre opredeleniya shkaly avtomorfizma”, Funkts. analiz i ego pril., 7:3 (1973), 1–17
[6] A. M. Vershik, “Ravnomernaya algebraicheskaya approksimatsiya operatorov sdviga i umnozheniya”, Dokl. AN SSSR, 259:3 (1981), 526–529 | MR | Zbl
[7] A. M. Vershik, “Teorema o markovskoi periodicheskoi approksimatsii v ergodicheskoi teorii”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii, v. 14, Zap. nauchn. sem. LOMI, 115, 1982, 72–82 | Zbl
[8] A. M. Vershik, “Teoriya ubyvayuschikh posledovatelnostei izmerimykh razbienii”, Algebra i analiz, 6:4 (1994), 1–68 | MR | Zbl
[9] A. M. Vershik, A. D. Gorbulskii, “Masshtabirovannaya entropiya filtratsii $\sigma$-algebr”, Teoriya veroyatn. i ee primen., 52:3 (2007), 446–467 | DOI
[10] A. M. Vershik, “Teoriya filtratsii podalgebr, standartnost i nezavisimost”, UMN, 72:2(434) (2017), 67–146 | DOI | MR | Zbl
[11] A. M. Vershik, P. B. Zatitskii, “Universalnaya adicheskaya approksimatsiya, invariantnye mery i masshtabirovannaya entropiya”, Izv. RAN. Ser. matem., 81:4 (2017), 68–107 | DOI | MR | Zbl
[12] E. Glasner, B. Weiss, “On the interplay between measurable and topological dynamics”, Handbook of Dynamical Systems, v. 1B, Elsevier, Amsterdam, 2006, 597–648 | MR | Zbl
[13] R. Gjerde, Ø. Johansen, “Bratteli–Vershik models for Cantor minimal systems associated to interval exchange transformations”, Math. Scand., 90:1 (2002), 87–100 | DOI | MR | Zbl
[14] S. Bezuglyi, O. Karpel, “Bratteli diagrams: structure, measures, dynamics”, Dynamics and numbers, Contemporary Math., 669, Amer. Math. Soc., Providence, RI, 2016, 1–36 | DOI | MR | Zbl
[15] A. B. Katok, “Monotonnaya ekvivalentnost v ergodicheskoi teorii”, Izv. AN SSSR. Ser. matem., 41:1 (1977), 104–157 | MR | Zbl
[16] A. B. Katok, A. M. Stepin, “Approksimatsii v ergodicheskoi teorii”, UMN, 22:5(137) (1967), 81–106 | MR | Zbl
[17] B. Hasselblatt, A. Katok, Handbook of Dynamical Systems, Elsevier, Amsterdam, 2002 | MR
[18] A. M. Stepin, “Ob entropiinom invariante ubyvayuschikh posledovatelnostei izmerimykh razbienii”, Funkts. analiz i ego pril., 5:3 (1971), 80–84 | MR
[19] A. M. Vershik, P. B. Zatitskii, “Ob universalnom borelevskom adicheskom prostranstve”, Zap. nauchn. sem. POMI, 468 (2018), 24–38 | MR