Differential Forms on Zero-Dimensional Singularities
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 3-22
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we discuss some problems of the deformation theory of zero-dimensional singularities, which are closely related to the study of properties of differential forms and the Poincaré–de Rham complex. We also investigate the cotangent homology and cohomology of zerodimensional singularities, compute the basic analytic invariants for certain types of such singularities, and examine in detail some interesting examples and applications.
Keywords:
multiple points, fat points, thick points, differential forms, Poincaré lemma, complete intersections, determinantal singularities, vector fields.
Mots-clés : cotangent homology
Mots-clés : cotangent homology
@article{FAA_2018_52_4_a0,
author = {A. G. Aleksandrov},
title = {Differential {Forms} on {Zero-Dimensional} {Singularities}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {3--22},
publisher = {mathdoc},
volume = {52},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a0/}
}
A. G. Aleksandrov. Differential Forms on Zero-Dimensional Singularities. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 3-22. http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a0/