Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2018_52_4_a0, author = {A. G. Aleksandrov}, title = {Differential {Forms} on {Zero-Dimensional} {Singularities}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {3--22}, publisher = {mathdoc}, volume = {52}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a0/} }
A. G. Aleksandrov. Differential Forms on Zero-Dimensional Singularities. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 3-22. http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a0/
[1] A. G. Aleksandrov, “Normalnye formy odnomernykh kvaziodnorodnykh polnykh peresechenii”, Matem. sb., 117(159):1 (1982), 3–31 | MR | Zbl
[2] A. G. Aleksandrov, “O komplekse de Rama kvaziodnorodnogo polnogo peresecheniya”, Funkts. analiz i ego pril., 17:1 (1983), 63–64 | MR | Zbl
[3] A. G. Aleksandrov, “Kogomologiya kvaziodnorodnogo polnogo peresecheniya”, Izv. AN SSSR, ser. matem., 49:3 (1985), 467–510 | MR
[4] A. G. Aleksandrov, “Duality and deformations of Artinian algebras”, Mezhdunarodnaya konferentsiya po algebre pamyati A. I. Shirshova, Sbornik tezisov dokladov po teorii kolets, algebr i modulei (Barnaul, 20–25 avgusta 1991), Institut matematiki SO AN SSSR, Novosibirsk, 1991, 134
[5] A. G. Aleksandrov, “Duality, derivations and deformations of zero-dimensional singularities”, Zero-dimensional schemes, de Gruyter, Berlin, 1994, 11–31 | MR | Zbl
[6] A. G. Aleksandrov, “Differentsialnye formy na kvaziodnorodnykh nepolnykh peresecheniyakh”, Funkts. analiz i ego pril., 50:1 (2016), 1–19 | DOI | MR | Zbl
[7] J. Briançon, A. Galligo, “Déformations distinguées d'un point de $\mathbb C^2$ ou $\mathbb R^2$”, Singularités à Cargèse, Astérisque, 7/8, Soc. math. France, Paris, 1973, 129–138 | MR
[8] X. Gómez-Mont, “An algebraic formula for the index of a vector field on a hypersurface with an isolated singularity”, J. Alg. Geometry, 7 (1998), 731–752 | MR | Zbl
[9] H. Grauert, H. Kerner, “Deformationen von Singularitäten komplexer Räume”, Math. Ann., 153 (1964), 236–260 | DOI | MR | Zbl
[10] G.-M. Greuel, H. Hamm, “Invarianten quasihomogener vollständiger Durchschnitte”, Invent. Math., 49:1 (1978), 67–86 | DOI | MR | Zbl
[11] A. Grothendieck, Éléments de Géométrie Algébrique: IV. Étude locale des schémas et des morphismes de schémas. Première Partie, Publ. Math. de l'I.H.É.S., 20, 1964 | MR
[12] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981
[13] J. Herzog, E. Kunz (eds.), Der kanonische Module eines Cohen–Macaulay Rings, Lecture Notes in Math., 238, Springer–Verlag, Berlin–Heidelberg–New York, 1971 | DOI | MR
[14] S. Lichtenbaum, M. Schlessinger, “The cotangent complex of a morphism”, Trans. Amer. Math. Soc., 128:1 (1967), 41–70 | DOI | MR | Zbl
[15] D. Mamford, Abelevy mnogoobraziya, Mir, M., 1971
[16] I. Naruki, “Some remarks on isolated singularities and their application to algebraic manifolds”, Publ. Res. Inst. Math. Sci., 13:1 (1977), 17–46 | DOI | MR | Zbl
[17] V. P. Palamodov, “Deformatsii kompleksnykh prostranstv”, UMN, 31:3(189) (1976), 129–194 | MR | Zbl
[18] S. Papadima, L. Paunescu, “Reduced weighted complete intersection and derivations”, J. Algebra, 183:2 (1996), 595–604 | DOI | MR | Zbl
[19] H.-J. Reiffen, “Das Lemma von Poincaré für holomorphe Differentialformen auf komplexen Räumen”, Math. Z., 101:2 (1967), 269–284 | DOI | MR | Zbl
[20] A. Seidenberg, “Derivations and integral closure”, Pacific J. Math., 16:1 (1966), 167–173 | DOI | MR | Zbl
[21] G. Scheja, H. Wiebe, “Zur Chevalley-Zerlegung von Derivationen”, Manuscripta Math., 33:1 (1980), 159–176 | DOI | MR | Zbl
[22] G. Scheja, H. Wiebe, “Über Derivationen von lokalen analytischen Algebren”, Symposia Math., XI, Academic Press, London, 1973, 161–192 | MR
[23] H. Wiebe, “Über homologische Invarianten lokaler Ringe”, Math. Ann., 179:4 (1969), 257–274 | DOI | MR | Zbl
[24] S. S.-T. Yau, “Continuous family of finite-dimensional representations of a solvable Lie algebra arising from singularities”, Proc. Nat. Acad. Sci. USA, 80 (1983), 7694–7696 | DOI | MR | Zbl