Differential Forms on Zero-Dimensional Singularities
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we discuss some problems of the deformation theory of zero-dimensional singularities, which are closely related to the study of properties of differential forms and the Poincaré–de Rham complex. We also investigate the cotangent homology and cohomology of zerodimensional singularities, compute the basic analytic invariants for certain types of such singularities, and examine in detail some interesting examples and applications.
Keywords: multiple points, fat points, thick points, differential forms, Poincaré lemma, complete intersections, determinantal singularities, vector fields.
Mots-clés : cotangent homology
@article{FAA_2018_52_4_a0,
     author = {A. G. Aleksandrov},
     title = {Differential {Forms} on {Zero-Dimensional} {Singularities}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a0/}
}
TY  - JOUR
AU  - A. G. Aleksandrov
TI  - Differential Forms on Zero-Dimensional Singularities
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 3
EP  - 22
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a0/
LA  - ru
ID  - FAA_2018_52_4_a0
ER  - 
%0 Journal Article
%A A. G. Aleksandrov
%T Differential Forms on Zero-Dimensional Singularities
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 3-22
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a0/
%G ru
%F FAA_2018_52_4_a0
A. G. Aleksandrov. Differential Forms on Zero-Dimensional Singularities. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 3-22. http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a0/

[1] A. G. Aleksandrov, “Normalnye formy odnomernykh kvaziodnorodnykh polnykh peresechenii”, Matem. sb., 117(159):1 (1982), 3–31 | MR | Zbl

[2] A. G. Aleksandrov, “O komplekse de Rama kvaziodnorodnogo polnogo peresecheniya”, Funkts. analiz i ego pril., 17:1 (1983), 63–64 | MR | Zbl

[3] A. G. Aleksandrov, “Kogomologiya kvaziodnorodnogo polnogo peresecheniya”, Izv. AN SSSR, ser. matem., 49:3 (1985), 467–510 | MR

[4] A. G. Aleksandrov, “Duality and deformations of Artinian algebras”, Mezhdunarodnaya konferentsiya po algebre pamyati A. I. Shirshova, Sbornik tezisov dokladov po teorii kolets, algebr i modulei (Barnaul, 20–25 avgusta 1991), Institut matematiki SO AN SSSR, Novosibirsk, 1991, 134

[5] A. G. Aleksandrov, “Duality, derivations and deformations of zero-dimensional singularities”, Zero-dimensional schemes, de Gruyter, Berlin, 1994, 11–31 | MR | Zbl

[6] A. G. Aleksandrov, “Differentsialnye formy na kvaziodnorodnykh nepolnykh peresecheniyakh”, Funkts. analiz i ego pril., 50:1 (2016), 1–19 | DOI | MR | Zbl

[7] J. Briançon, A. Galligo, “Déformations distinguées d'un point de $\mathbb C^2$ ou $\mathbb R^2$”, Singularités à Cargèse, Astérisque, 7/8, Soc. math. France, Paris, 1973, 129–138 | MR

[8] X. Gómez-Mont, “An algebraic formula for the index of a vector field on a hypersurface with an isolated singularity”, J. Alg. Geometry, 7 (1998), 731–752 | MR | Zbl

[9] H. Grauert, H. Kerner, “Deformationen von Singularitäten komplexer Räume”, Math. Ann., 153 (1964), 236–260 | DOI | MR | Zbl

[10] G.-M. Greuel, H. Hamm, “Invarianten quasihomogener vollständiger Durchschnitte”, Invent. Math., 49:1 (1978), 67–86 | DOI | MR | Zbl

[11] A. Grothendieck, Éléments de Géométrie Algébrique: IV. Étude locale des schémas et des morphismes de schémas. Première Partie, Publ. Math. de l'I.H.É.S., 20, 1964 | MR

[12] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981

[13] J. Herzog, E. Kunz (eds.), Der kanonische Module eines Cohen–Macaulay Rings, Lecture Notes in Math., 238, Springer–Verlag, Berlin–Heidelberg–New York, 1971 | DOI | MR

[14] S. Lichtenbaum, M. Schlessinger, “The cotangent complex of a morphism”, Trans. Amer. Math. Soc., 128:1 (1967), 41–70 | DOI | MR | Zbl

[15] D. Mamford, Abelevy mnogoobraziya, Mir, M., 1971

[16] I. Naruki, “Some remarks on isolated singularities and their application to algebraic manifolds”, Publ. Res. Inst. Math. Sci., 13:1 (1977), 17–46 | DOI | MR | Zbl

[17] V. P. Palamodov, “Deformatsii kompleksnykh prostranstv”, UMN, 31:3(189) (1976), 129–194 | MR | Zbl

[18] S. Papadima, L. Paunescu, “Reduced weighted complete intersection and derivations”, J. Algebra, 183:2 (1996), 595–604 | DOI | MR | Zbl

[19] H.-J. Reiffen, “Das Lemma von Poincaré für holomorphe Differentialformen auf komplexen Räumen”, Math. Z., 101:2 (1967), 269–284 | DOI | MR | Zbl

[20] A. Seidenberg, “Derivations and integral closure”, Pacific J. Math., 16:1 (1966), 167–173 | DOI | MR | Zbl

[21] G. Scheja, H. Wiebe, “Zur Chevalley-Zerlegung von Derivationen”, Manuscripta Math., 33:1 (1980), 159–176 | DOI | MR | Zbl

[22] G. Scheja, H. Wiebe, “Über Derivationen von lokalen analytischen Algebren”, Symposia Math., XI, Academic Press, London, 1973, 161–192 | MR

[23] H. Wiebe, “Über homologische Invarianten lokaler Ringe”, Math. Ann., 179:4 (1969), 257–274 | DOI | MR | Zbl

[24] S. S.-T. Yau, “Continuous family of finite-dimensional representations of a solvable Lie algebra arising from singularities”, Proc. Nat. Acad. Sci. USA, 80 (1983), 7694–7696 | DOI | MR | Zbl