Hyperquasipolynomials for the Theta-Function
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 84-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $g$ be a linear combination with quasipolynomial coefficients of shifts of the Jacobi theta function and its derivatives in the argument. All entire functions $f\colon\mathbb{C}\to\mathbb{C}$ satisfying $f(x+y)g(x-y)=\alpha_1(x)\beta_1(y)+\cdots+\alpha_r(x)\beta_r(y)$ for some $r\in\mathbb{N}$ and $\alpha_j,\beta_j\colon\mathbb{C}\to\mathbb{C}$ are described.
Keywords: addition theorem, Jacobi theta function, Weierstrass sigma function, elliptic function, functional equation.
@article{FAA_2018_52_3_a7,
     author = {A. A. Illarionov and M. A. Romanov},
     title = {Hyperquasipolynomials for the {Theta-Function}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {84--87},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a7/}
}
TY  - JOUR
AU  - A. A. Illarionov
AU  - M. A. Romanov
TI  - Hyperquasipolynomials for the Theta-Function
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 84
EP  - 87
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a7/
LA  - ru
ID  - FAA_2018_52_3_a7
ER  - 
%0 Journal Article
%A A. A. Illarionov
%A M. A. Romanov
%T Hyperquasipolynomials for the Theta-Function
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 84-87
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a7/
%G ru
%F FAA_2018_52_3_a7
A. A. Illarionov; M. A. Romanov. Hyperquasipolynomials for the Theta-Function. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 84-87. http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a7/

[1] V. M. Bukhshtaber, D. V. Leikin, UMN, 60:2 (2005), 151–152 | DOI | MR | Zbl

[2] V. M. Bukhshtaber, D. V. Leikin, Trudy MIAN, 251, 2005, 54–126 | Zbl

[3] V. M. Bukhshtaber, I. M. Krichever, UMN, 61:1 (2006), 25–84 | DOI | MR | Zbl

[4] V. A. Bykovskii, Funkts. analiz i ego pril., 50:3 (2016), 34–46 | DOI | MR | Zbl

[5] A. A. Illarionov, Trudy MIAN, 299, 2017, 105–117 | DOI | Zbl

[6] R. Rochberg, L. Rubel, Indiana Univ. Math. J., 41:2 (1992), 363–376 | DOI | MR | Zbl

[7] M. Bonk, Math. Ann., 298:4 (1994), 591–610 | DOI | MR | Zbl

[8] P. Sinopoulos, Aequationes Math., 48:2–3 (1994), 171–193 | DOI | MR | Zbl

[9] M. Bonk, Abh. Math. Sem. Univ. Hamburg, 65 (1995), 29–55 | DOI | MR | Zbl

[10] M. Bonk, Aequationes Math., 53:1–2 (1997), 54–72 | DOI | MR | Zbl

[11] A. Jarai, W. Sander, Functional Equations—Results and Advances, Advances in Mathematics, 3, Kluwer Acad. Publ., Dordrecht, 2002, 29–79 | MR | Zbl

[12] V. A. Bykovskii, Dokl. RAN, 470:3 (2016), 255–256 | DOI | Zbl

[13] A. A. Illarionov, Funkts. analiz i ego pril., 50:4 (2016), 43–54 | DOI | MR | Zbl

[14] A. A. Mirolyubov, M. A. Soldatov, Lineinye odnorodnye raznostnye uravneniya, Nauka, M., 1981 | MR