Higher Cohomology Vanishing of Line Bundles on Generalized Springer Resolution
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 66-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

A conjecture of Michael Finkelberg and Andrei Ionov is proved on the basis of a generalization of the Springer resolution and the Grauert–Riemenschneider vanishing theorem. As a corollary, it is proved that the coefficients of the multivariable version of Kostka functions introduced by Finkelberg and Ionov are nonnegative.
Keywords: Kostka-Shoji polynomials, cohomology vanishing
Mots-clés : quivers, Lusztig convolution diagram.
@article{FAA_2018_52_3_a5,
     author = {Yue Hu},
     title = {Higher {Cohomology} {Vanishing} of {Line} {Bundles} on {Generalized} {Springer} {Resolution}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {66--78},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a5/}
}
TY  - JOUR
AU  - Yue Hu
TI  - Higher Cohomology Vanishing of Line Bundles on Generalized Springer Resolution
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 66
EP  - 78
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a5/
LA  - ru
ID  - FAA_2018_52_3_a5
ER  - 
%0 Journal Article
%A Yue Hu
%T Higher Cohomology Vanishing of Line Bundles on Generalized Springer Resolution
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 66-78
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a5/
%G ru
%F FAA_2018_52_3_a5
Yue Hu. Higher Cohomology Vanishing of Line Bundles on Generalized Springer Resolution. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 66-78. http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a5/

[1] P. N. Achar, A. Henderson, “Orbit closures in the enhanced nilpotent cone”, Adv. Math., 219:1 (2008), 27–62 | DOI | MR | Zbl

[2] H. H. Andersen, J. C. Jantzen, “Cohomology of induced representations for algebraic groups”, Math. Ann., 269:4 (1984), 487–525 | DOI | MR | Zbl

[3] M. Brion, S. Kumar, Frobenius Splitting Methods in Geometry and Representation Theory, Progress in Mathematics, 231, Birkhäuser, Boston, MA, 2005 | DOI | MR | Zbl

[4] B. Broer, “Line bundles on the cotangent bundle of the flag variety”, Invent. Math., 113:1 (1993), 1–20 | DOI | MR | Zbl

[5] B. Broer, “Normality of some nilpotent varieties and cohomology of line bundles on the cotangent bundle of the flag variety”, Lie Theory and Geometry, Progress in Mathematics, 123, Birkhäuser Boston, Boston, MA, 1994, 1–19 | MR | Zbl

[6] R. K. Brylinski, “Limits of weight spaces, Lusztig's $q$-analogs, and fiberings of adjoint orbits”, J. Amer. Math. Soc., 2:3 (1989), 517–533 | MR | Zbl

[7] N. Chriss, V. Ginzburg, Representation Theory and Complex Geometry, Modern Birkhäuser Classics, Birkhäuser, Boston, MA, 2010 | MR | Zbl

[8] M. Finkelberg, A. Ionov, “Kostka–Shoji polynomials and Lusztig's convolution diagram”, Bull. Inst. Math. Acad. Sinica (New Series), 13:1 (2018), 31–42 | MR | Zbl

[9] G. R. Kempf, “On the collapsing of homogeneous bundles”, Invent. Math., 37:3 (1976), 229–239 | DOI | MR | Zbl

[10] S. Kumar, N. Lauritzen, J. F. Thomsen, “Frobenius splitting of cotangent bundles of flag varieties”, Invent. Math., 136:3 (1999), 603–621 | DOI | MR | Zbl

[11] Wen-Wei Li, “Basic functions and unramified local L-factors for split groups”, Sci. China Math., 60:5 (2017), 777–812 | DOI | MR | Zbl

[12] G. Lusztig, “Singularities, character formulas, and a $q$-analog of weight multiplicities”, Analysis and Topology on Singular Spaces, II, III (Luminy, 1981), Astérisque, 101, Soc. Math. France, Paris, 1983, 208–229 | MR

[13] G. Lusztig, “Canonical bases arising from quantized enveloping algebras”, J. Amer. Math. Soc., 3:2 (1990), 447–498 | DOI | MR | Zbl

[14] G. Lusztig, “Quivers, perverse sheaves, and quantized enveloping algebras”, J. Amer. Math. Soc., 4:2 (1991), 365–421 | DOI | MR | Zbl

[15] V. B. Mehta, W. van der Kallen, “On a Grauert–Riemenschneider vanishing theorem for Frobenius split varieties in characteristic $p$”, Invent. Math., 108:1 (1992), 11–13 | DOI | MR

[16] V. B. Mehta, W. van der Kallen, “A simultaneous Frobenius splitting for closures of conjugacy classes of nilpotent matrices”, Compositio Math., 84:2 (1992), 211–221 | MR | Zbl

[17] D. Orr, M. Shimozono, Quiver Hall–Littlewood functions and Kostka–Shoji polynomials, arXiv: 1704.05178

[18] D. I. Panyushev, “Generalised Kostka–Foulkes polynomials and cohomology of line bundles on homogeneous vector bundles”, Selecta Math. (N.S.), 16:2 (2010), 315–342 | DOI | MR | Zbl

[19] M. Reineke, “Quivers, desingularizations and canonical bases”, Studies in Memory of Issai Schur (Chevaleret/Rehovot, 2000), Progress in Mathematics, 210, Birkhäuser, Boston, MA, 2003, 325–344 | MR | Zbl

[20] O. Schiffmann, “Quivers of type $A$, flag varieties and representation theory”, Representations of finite dimensional algebras and related topics in Lie theory and geometry, Fields Inst. Commun., 40, Amer. Math. Soc., Providence, RI, 2004, 453–479 | MR | Zbl

[21] T. Shoji, “Green functions attached to limit symbols”, Representation theory of algebraic groups and quantum groups, Advance Studies in Pure Mathematics, 40, Math. Soc. Japan, Tokyo, 2004, 443–467 | DOI | MR | Zbl

[22] T. Shoji, “Kostka functions associated to complex reflection groups and a conjecture of Finkelberg–Ionov”, Sci. China Math., 61:2 (2018), 353–384 | DOI | MR | Zbl

[23] T. A. Springer, “Some arithmetical results on semi-simple {L}ie algebras”, Inst. Hautes Études Sci. Publ. Math., 30 (1966), 115–141 | DOI | MR