Higher Cohomology Vanishing of Line Bundles on Generalized Springer Resolution
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 66-78
Voir la notice de l'article provenant de la source Math-Net.Ru
A conjecture of Michael Finkelberg and Andrei Ionov is proved on the basis of a generalization of the Springer resolution and the Grauert–Riemenschneider vanishing theorem. As a corollary, it is proved that the coefficients of the multivariable version of Kostka functions introduced by Finkelberg and Ionov are nonnegative.
Keywords:
Kostka-Shoji polynomials, cohomology vanishing
Mots-clés : quivers, Lusztig convolution diagram.
Mots-clés : quivers, Lusztig convolution diagram.
@article{FAA_2018_52_3_a5,
author = {Yue Hu},
title = {Higher {Cohomology} {Vanishing} of {Line} {Bundles} on {Generalized} {Springer} {Resolution}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {66--78},
publisher = {mathdoc},
volume = {52},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a5/}
}
Yue Hu. Higher Cohomology Vanishing of Line Bundles on Generalized Springer Resolution. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 66-78. http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a5/