Higher Cohomology Vanishing of Line Bundles on Generalized Springer Resolution
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 66-78

Voir la notice de l'article provenant de la source Math-Net.Ru

A conjecture of Michael Finkelberg and Andrei Ionov is proved on the basis of a generalization of the Springer resolution and the Grauert–Riemenschneider vanishing theorem. As a corollary, it is proved that the coefficients of the multivariable version of Kostka functions introduced by Finkelberg and Ionov are nonnegative.
Keywords: Kostka-Shoji polynomials, cohomology vanishing
Mots-clés : quivers, Lusztig convolution diagram.
@article{FAA_2018_52_3_a5,
     author = {Yue Hu},
     title = {Higher {Cohomology} {Vanishing} of {Line} {Bundles} on {Generalized} {Springer} {Resolution}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {66--78},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a5/}
}
TY  - JOUR
AU  - Yue Hu
TI  - Higher Cohomology Vanishing of Line Bundles on Generalized Springer Resolution
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 66
EP  - 78
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a5/
LA  - ru
ID  - FAA_2018_52_3_a5
ER  - 
%0 Journal Article
%A Yue Hu
%T Higher Cohomology Vanishing of Line Bundles on Generalized Springer Resolution
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 66-78
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a5/
%G ru
%F FAA_2018_52_3_a5
Yue Hu. Higher Cohomology Vanishing of Line Bundles on Generalized Springer Resolution. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 66-78. http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a5/