Operational Calculus for the Fourier Transform on the Group $\operatorname{GL}(2,\mathbb{R})$ and the Problem about the Action of an Overalgebra in the Plancherel Decomposition
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 42-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Fourier transform on the group $\operatorname{GL}(2,\mathbb{R})$ of real $2\times2$ matrices is considered. It is shown that the Fourier images of polynomial differential operators on $\operatorname{GL}(2,\mathbb{R})$ are differential-difference operators with coefficients meromorphic in the parameters of representations. Expressions for operators contain shifts in the imaginary direction with respect to the integration contour in the Plancherel formula. Explicit formulas for the images of partial derivations and multiplications by coordinates are presented.
Mots-clés : Fourier transform on groups, semisimple Lie group
Keywords: differential-difference operator, Weil representation, principal series of representations, operational calculus, unitary representation, Heisenberg algebra.
@article{FAA_2018_52_3_a3,
     author = {Yu. A. Neretin},
     title = {Operational {Calculus} for the {Fourier} {Transform} on the {Group} $\operatorname{GL}(2,\mathbb{R})$ and the {Problem} about the {Action} of an {Overalgebra} in the {Plancherel} {Decomposition}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {42--52},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a3/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Operational Calculus for the Fourier Transform on the Group $\operatorname{GL}(2,\mathbb{R})$ and the Problem about the Action of an Overalgebra in the Plancherel Decomposition
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 42
EP  - 52
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a3/
LA  - ru
ID  - FAA_2018_52_3_a3
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Operational Calculus for the Fourier Transform on the Group $\operatorname{GL}(2,\mathbb{R})$ and the Problem about the Action of an Overalgebra in the Plancherel Decomposition
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 42-52
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a3/
%G ru
%F FAA_2018_52_3_a3
Yu. A. Neretin. Operational Calculus for the Fourier Transform on the Group $\operatorname{GL}(2,\mathbb{R})$ and the Problem about the Action of an Overalgebra in the Plancherel Decomposition. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 42-52. http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a3/

[1] L. Ehrenpreis, F. I. Mautner, “Some properties of the Fourier transform on semi-simple Lie groups. I”, Ann. of Math. (2), 61:3 (1955), 406–439 ; “ II”, Trans. Amer. Math. Soc., 84 (1957), 1–55 ; “ III”, Trans. Amer. Math. Soc., 90 (1959), 431–484 | DOI | MR | Zbl | MR | Zbl | MR | Zbl

[2] I. M. Gelfand, M. I. Graev, I. I. Pyatetskii-Shapiro, Obobschennye funktsii, v. 6, Teoriya predstavlenii i avtomorfnye funktsii, Fizmatlit, M., 1966 | MR

[3] I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin, Obobschennye funktsii, v. 5, Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Fizmatgiz, M., 1962 | MR

[4] I. M. Gelfand, M. A. Naimark, “Unitarnye predstavleniya gruppy Lorentsa”, Izv. AN SSSR. Ser. matem., 11:5 (1947), 411–504 | MR | Zbl

[5] Harish-Chandra, “Plancherel formula for the $2\times 2$ real unimodular group”, Proc. Nat. Acad. Sci. U. S. A., 38 (1952), 337–342 | DOI | MR | Zbl

[6] R. Howe, “Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond”, Israel Math. Conf. Proc., 8, Bar-Ilan Univ., Ramat Gan, 1995, 1–182 | MR | Zbl

[7] A. A. Kirillov, Elementy teorii predstavlenii, Nauka, M., 1978 | MR

[8] V. F. Molchanov, “Kanonicheskie predstavleniya i nadgruppy dlya giperboloidov”, Funkts. analiz i ego pril., 39:4 (2005), 48–61 | DOI | MR | Zbl

[9] V. F. Molchanov, “Canonical representations on Lobachevsky spaces: an interaction with an overalgebra”, Acta Appl. Math., 99:3 (2007), 321–337 | DOI | MR | Zbl

[10] V. F. Molchanov, “Preobrazovaniya Puassona i Fure dlya tenzornykh proizvedenii”, Funkts. analiz i ego pril., 49:4 (2015), 50–60 | DOI | Zbl

[11] Yu. A. Neretin, “Psevdorimanovy simmetricheskie prostranstva: odnotipnye realizatsii i otkrytye vlozheniya v grassmaniany”, Zap. nauchn. sem. POMI, 256, POMI, SPb, 1999, 145–167 | Zbl

[12] Yu. A. Neretin, “Deistvie nadalgebry v plansherelevskom razlozhenii i operatory sdviga v mnimom napravlenii”, Izv. RAN. Ser. matem., 66:5 (2002), 171–182 | DOI | MR | Zbl

[13] Yu. A. Neretin, “Plancherel formula for Berezin deformation of $L^2$ on Riemannian symmetric space”, J. Funct. Anal., 189:2 (2002), 336–408 | DOI | MR | Zbl

[14] Yu. A. Neretin, Lectures on Gaussian integral operators and classical groups, European Mathematical Society (EMS), Zürich, 2011 | MR | Zbl

[15] Yu. A. Neretin, “Restriction of representations of $\operatorname{GL}(n+1,\mathbb{C})$ to $\operatorname{GL}(n,\mathbb{C})$ and action of the Lie overalgebra”, Algebras and Representation Theory | DOI | MR

[16] Yu. A. Neretin, “The Fourier transform on the group $\operatorname{GL}_2(\mathbb{R})$ and the action of the overalgebra $\mathfrak{gl}_4$”, J. Fourier Analysis Appl. | DOI | MR

[17] Yu. A. Neretin, After Plancherel formula, arXiv: 1801.08780