Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2018_52_3_a3, author = {Yu. A. Neretin}, title = {Operational {Calculus} for the {Fourier} {Transform} on the {Group} $\operatorname{GL}(2,\mathbb{R})$ and the {Problem} about the {Action} of an {Overalgebra} in the {Plancherel} {Decomposition}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {42--52}, publisher = {mathdoc}, volume = {52}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a3/} }
TY - JOUR AU - Yu. A. Neretin TI - Operational Calculus for the Fourier Transform on the Group $\operatorname{GL}(2,\mathbb{R})$ and the Problem about the Action of an Overalgebra in the Plancherel Decomposition JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2018 SP - 42 EP - 52 VL - 52 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a3/ LA - ru ID - FAA_2018_52_3_a3 ER -
%0 Journal Article %A Yu. A. Neretin %T Operational Calculus for the Fourier Transform on the Group $\operatorname{GL}(2,\mathbb{R})$ and the Problem about the Action of an Overalgebra in the Plancherel Decomposition %J Funkcionalʹnyj analiz i ego priloženiâ %D 2018 %P 42-52 %V 52 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a3/ %G ru %F FAA_2018_52_3_a3
Yu. A. Neretin. Operational Calculus for the Fourier Transform on the Group $\operatorname{GL}(2,\mathbb{R})$ and the Problem about the Action of an Overalgebra in the Plancherel Decomposition. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 42-52. http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a3/
[1] L. Ehrenpreis, F. I. Mautner, “Some properties of the Fourier transform on semi-simple Lie groups. I”, Ann. of Math. (2), 61:3 (1955), 406–439 ; “ II”, Trans. Amer. Math. Soc., 84 (1957), 1–55 ; “ III”, Trans. Amer. Math. Soc., 90 (1959), 431–484 | DOI | MR | Zbl | MR | Zbl | MR | Zbl
[2] I. M. Gelfand, M. I. Graev, I. I. Pyatetskii-Shapiro, Obobschennye funktsii, v. 6, Teoriya predstavlenii i avtomorfnye funktsii, Fizmatlit, M., 1966 | MR
[3] I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin, Obobschennye funktsii, v. 5, Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Fizmatgiz, M., 1962 | MR
[4] I. M. Gelfand, M. A. Naimark, “Unitarnye predstavleniya gruppy Lorentsa”, Izv. AN SSSR. Ser. matem., 11:5 (1947), 411–504 | MR | Zbl
[5] Harish-Chandra, “Plancherel formula for the $2\times 2$ real unimodular group”, Proc. Nat. Acad. Sci. U. S. A., 38 (1952), 337–342 | DOI | MR | Zbl
[6] R. Howe, “Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond”, Israel Math. Conf. Proc., 8, Bar-Ilan Univ., Ramat Gan, 1995, 1–182 | MR | Zbl
[7] A. A. Kirillov, Elementy teorii predstavlenii, Nauka, M., 1978 | MR
[8] V. F. Molchanov, “Kanonicheskie predstavleniya i nadgruppy dlya giperboloidov”, Funkts. analiz i ego pril., 39:4 (2005), 48–61 | DOI | MR | Zbl
[9] V. F. Molchanov, “Canonical representations on Lobachevsky spaces: an interaction with an overalgebra”, Acta Appl. Math., 99:3 (2007), 321–337 | DOI | MR | Zbl
[10] V. F. Molchanov, “Preobrazovaniya Puassona i Fure dlya tenzornykh proizvedenii”, Funkts. analiz i ego pril., 49:4 (2015), 50–60 | DOI | Zbl
[11] Yu. A. Neretin, “Psevdorimanovy simmetricheskie prostranstva: odnotipnye realizatsii i otkrytye vlozheniya v grassmaniany”, Zap. nauchn. sem. POMI, 256, POMI, SPb, 1999, 145–167 | Zbl
[12] Yu. A. Neretin, “Deistvie nadalgebry v plansherelevskom razlozhenii i operatory sdviga v mnimom napravlenii”, Izv. RAN. Ser. matem., 66:5 (2002), 171–182 | DOI | MR | Zbl
[13] Yu. A. Neretin, “Plancherel formula for Berezin deformation of $L^2$ on Riemannian symmetric space”, J. Funct. Anal., 189:2 (2002), 336–408 | DOI | MR | Zbl
[14] Yu. A. Neretin, Lectures on Gaussian integral operators and classical groups, European Mathematical Society (EMS), Zürich, 2011 | MR | Zbl
[15] Yu. A. Neretin, “Restriction of representations of $\operatorname{GL}(n+1,\mathbb{C})$ to $\operatorname{GL}(n,\mathbb{C})$ and action of the Lie overalgebra”, Algebras and Representation Theory | DOI | MR
[16] Yu. A. Neretin, “The Fourier transform on the group $\operatorname{GL}_2(\mathbb{R})$ and the action of the overalgebra $\mathfrak{gl}_4$”, J. Fourier Analysis Appl. | DOI | MR
[17] Yu. A. Neretin, After Plancherel formula, arXiv: 1801.08780