Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2018_52_3_a2, author = {V. M. Manuilov}, title = {Symmetrization of {Cuntz'} {Picture} for the {Kasparov} $KK${-Bifunctor}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {32--41}, publisher = {mathdoc}, volume = {52}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a2/} }
V. M. Manuilov. Symmetrization of Cuntz' Picture for the Kasparov $KK$-Bifunctor. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 32-41. http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a2/
[1] R. G. Bartle, L. M. Graves, “Mappings between function spaces”, Trans. Amer. Math. Soc., 72 (1952), 400–413 | DOI | MR | Zbl
[2] J. Cuntz, “A new look at $KK$-theory”, $K$-theory, 1:1 (1987), 31–51 | DOI | MR | Zbl
[3] J. Cuntz, “A general construction of bivariant $K$-theories on the category of $C^*$-algebras”, Operator algebras and operator theory, Contemp. Math., 228, Amer. Math. Soc., Providence, RI, 1998, 31–43 | DOI | MR | Zbl
[4] B. Magajna, “Hilbert $C^*$-modules in which all closed submodules are complemented”, Proc. Amer. Math. Soc., 125:3 (1997), 849–852 | DOI | MR | Zbl
[5] V. Manuilov, A $KK$-like picture for $E$-theory of $C^*$-algebras, arXiv: 1703.10781
[6] G. K. Pedersen, “Pullback and pushout constructions in $C^*$-algebra theory”, J. Funct. Anal., 167:2 (1999), 243–344 | DOI | MR | Zbl
[7] K. Thomsen, “Homotopy classes of $*$-homomorphisms between stable $C^*$-algebras and their multiplier algebras”, Duke Math. J., 61:1 (1990), 67–104 | DOI | MR | Zbl