Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2018_52_3_a0, author = {A. M. Vershik and A. V. Malyutin}, title = {The {Absolute} of {Finitely} {Generated} {Groups:} {II.} {The} {Laplacian} and {Degenerate} {Parts}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {3--21}, publisher = {mathdoc}, volume = {52}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a0/} }
TY - JOUR AU - A. M. Vershik AU - A. V. Malyutin TI - The Absolute of Finitely Generated Groups: II. The Laplacian and Degenerate Parts JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2018 SP - 3 EP - 21 VL - 52 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a0/ LA - ru ID - FAA_2018_52_3_a0 ER -
A. M. Vershik; A. V. Malyutin. The Absolute of Finitely Generated Groups: II. The Laplacian and Degenerate Parts. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 3-21. http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a0/
[1] A. M. Vershik, “Zadacha o tsentralnykh merakh na prostranstvakh putei graduirovannykh grafov”, Funkts. analiz i ego pril., 48:4 (2014), 26–46 | DOI | Zbl
[2] A. M. Vershik, “Osnaschennye graduirovannye grafy, proektivnye predely simpleksov i ikh granitsy”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXIV, Zap. nauchn. sem. POMI, 432, POMI, SPb., 2015, 83–104 | Zbl
[3] A. M. Vershik, A. V. Malyutin, “Fazovyi perekhod v zadache o granitse-vykhod dlya sluchainykh bluzhdanii na gruppakh”, Funkts. analiz i ego pril., 49:2 (2015), 7–20 | DOI | Zbl
[4] A. M. Vershik, “Teoriya filtratsii podalgebr, standartnost i nezavisimost”, UMN, 72:2(434) (2017), 67–146 | DOI | MR | Zbl
[5] A. M. Vershik, A. V. Malyutin, “Beskonechnye geodezicheskie v diskretnoi gruppe Geizenberga”, Zap. nauchn. sem. POMI,, 462, POMI, SPb., 2017, 39–51
[6] E. B. Dynkin, “Prostranstvo vykhodov markovskogo protsessa”, UMN, 24:4(148) (1969), 89–152 | MR | Zbl
[7] G. A. Margulis, “Polozhitelnye garmonicheskie funktsii na nilpotentnykh gruppakh”, Dokl. AN SSSR, 166:5 (1966), 1054–1057 | Zbl
[8] S. A. Molchanov, “O granitse Martina pryamogo proizvedeniya markovskikh tsepei”, Teoriya veroyatn. i ee primen., 12:2 (1967), 353–358 | MR | Zbl
[9] Chzhun Kai-lai, Odnorodnye tsepi Markova, Mir, M., 1964
[10] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, W. P. Thurston, Word Processing in Groups, Jones and Bartlett Publishers, Boston, MA, 1992 | MR | Zbl
[11] G. B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, 122, Princeton Univ. Press, Princeton, NJ, 1989 | MR | Zbl
[12] M. Gromov, Geometric Group Theory, v. 2, London Math. Soc. Lecture Note Series, 182, Asymptotic Invariants of Infinite Groups, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[13] Y. Guivarc'h, A. Raugi, “Frontière de Furstenberg, propriétés de contraction et théorème de convergence”, Z. Wahrsch. Verw. Gebiete, 69:2 (1985), 187–242 | DOI | MR | Zbl
[14] V. A. Kaimanovich, A. M. Vershik, “Random walks on discrete groups: boundary and entropy”, Ann. Probab., 11:3 (1983), 457–490 | DOI | MR | Zbl
[15] V. A. Kaimanovich, W. Woess, “Boundary and entropy of space homogeneous Markov chains”, Ann. Probab., 30:1 (2002), 323–363 | DOI | MR | Zbl
[16] A. M. Vershik, “Intrinsic metric on graded graphs, standardness, and invariant measures”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXIII, Zap. nauchn. sem. POMI, 421, POMI, SPb., 2014, 58–67 | MR | Zbl
[17] A. M. Vershik, A. V. Malyutin, “The absolute of finitely generated groups: I. Commutative (semi)groups”, Eur. J. Math. (to appear) | MR
[18] W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Math., 138, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl