The Absolute of Finitely Generated Groups: II. The Laplacian and Degenerate Parts
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 3-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article continues a series of papers on the absolute of finitely generated groups. The absolute of a group with a fixed system of generators is defined as the set of ergodic Markov measures for which the system of cotransition probabilities is the same as for the simple (right) random walk generated by the uniform distribution on the generators. The absolute is a new boundary of a group, generated by random walks on the group. We divide the absolute into two parts, Laplacian and degenerate, and describe the connection between the absolute, homogeneous Markov processes, and the Laplace operator; prove that the Laplacian part is preserved under taking certain central extensions of groups; reduce the computation of the Laplacian part of the absolute of a nilpotent group to that of its abelianization; consider a number of fundamental examples (free groups, commutative groups, the discrete Heisenberg group).
Keywords: absolute, Laplace operator, dynamic Cayley graph, nilpotent groups, Laplacian part of absolute.
@article{FAA_2018_52_3_a0,
     author = {A. M. Vershik and A. V. Malyutin},
     title = {The {Absolute} of {Finitely} {Generated} {Groups:} {II.} {The} {Laplacian} and {Degenerate} {Parts}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a0/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - A. V. Malyutin
TI  - The Absolute of Finitely Generated Groups: II. The Laplacian and Degenerate Parts
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 3
EP  - 21
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a0/
LA  - ru
ID  - FAA_2018_52_3_a0
ER  - 
%0 Journal Article
%A A. M. Vershik
%A A. V. Malyutin
%T The Absolute of Finitely Generated Groups: II. The Laplacian and Degenerate Parts
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 3-21
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a0/
%G ru
%F FAA_2018_52_3_a0
A. M. Vershik; A. V. Malyutin. The Absolute of Finitely Generated Groups: II. The Laplacian and Degenerate Parts. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 3-21. http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a0/

[1] A. M. Vershik, “Zadacha o tsentralnykh merakh na prostranstvakh putei graduirovannykh grafov”, Funkts. analiz i ego pril., 48:4 (2014), 26–46 | DOI | Zbl

[2] A. M. Vershik, “Osnaschennye graduirovannye grafy, proektivnye predely simpleksov i ikh granitsy”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXIV, Zap. nauchn. sem. POMI, 432, POMI, SPb., 2015, 83–104 | Zbl

[3] A. M. Vershik, A. V. Malyutin, “Fazovyi perekhod v zadache o granitse-vykhod dlya sluchainykh bluzhdanii na gruppakh”, Funkts. analiz i ego pril., 49:2 (2015), 7–20 | DOI | Zbl

[4] A. M. Vershik, “Teoriya filtratsii podalgebr, standartnost i nezavisimost”, UMN, 72:2(434) (2017), 67–146 | DOI | MR | Zbl

[5] A. M. Vershik, A. V. Malyutin, “Beskonechnye geodezicheskie v diskretnoi gruppe Geizenberga”, Zap. nauchn. sem. POMI,, 462, POMI, SPb., 2017, 39–51

[6] E. B. Dynkin, “Prostranstvo vykhodov markovskogo protsessa”, UMN, 24:4(148) (1969), 89–152 | MR | Zbl

[7] G. A. Margulis, “Polozhitelnye garmonicheskie funktsii na nilpotentnykh gruppakh”, Dokl. AN SSSR, 166:5 (1966), 1054–1057 | Zbl

[8] S. A. Molchanov, “O granitse Martina pryamogo proizvedeniya markovskikh tsepei”, Teoriya veroyatn. i ee primen., 12:2 (1967), 353–358 | MR | Zbl

[9] Chzhun Kai-lai, Odnorodnye tsepi Markova, Mir, M., 1964

[10] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, W. P. Thurston, Word Processing in Groups, Jones and Bartlett Publishers, Boston, MA, 1992 | MR | Zbl

[11] G. B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, 122, Princeton Univ. Press, Princeton, NJ, 1989 | MR | Zbl

[12] M. Gromov, Geometric Group Theory, v. 2, London Math. Soc. Lecture Note Series, 182, Asymptotic Invariants of Infinite Groups, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[13] Y. Guivarc'h, A. Raugi, “Frontière de Furstenberg, propriétés de contraction et théorème de convergence”, Z. Wahrsch. Verw. Gebiete, 69:2 (1985), 187–242 | DOI | MR | Zbl

[14] V. A. Kaimanovich, A. M. Vershik, “Random walks on discrete groups: boundary and entropy”, Ann. Probab., 11:3 (1983), 457–490 | DOI | MR | Zbl

[15] V. A. Kaimanovich, W. Woess, “Boundary and entropy of space homogeneous Markov chains”, Ann. Probab., 30:1 (2002), 323–363 | DOI | MR | Zbl

[16] A. M. Vershik, “Intrinsic metric on graded graphs, standardness, and invariant measures”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXIII, Zap. nauchn. sem. POMI, 421, POMI, SPb., 2014, 58–67 | MR | Zbl

[17] A. M. Vershik, A. V. Malyutin, “The absolute of finitely generated groups: I. Commutative (semi)groups”, Eur. J. Math. (to appear) | MR

[18] W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Math., 138, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl