Periodic Trajectories and Coincidence Points of Tuples of Set-Valued Maps
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 72-77

Voir la notice de l'article provenant de la source Math-Net.Ru

A fixed-point theorem is proved for a finite composition of set-valued Lipschitz maps such that the product of their Lipschitz constants is less than 1. The notion of a Lipschitz tuple of (finitely many) set-valued maps is introduced; it is proved that such a tuple has a periodic trajectory, which determines a fixed point of the given composition of set-valued Lipschitz maps. This result is applied to study the coincidence points of a pair of tuples (Lipschitz and covering).
Keywords: set-valued map, Hausdorff metric, Lipschitz set-valued map, fixed point, surjective operator.
@article{FAA_2018_52_2_a5,
     author = {B. D. Gel'man},
     title = {Periodic {Trajectories} and {Coincidence} {Points} of {Tuples} of {Set-Valued} {Maps}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {72--77},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a5/}
}
TY  - JOUR
AU  - B. D. Gel'man
TI  - Periodic Trajectories and Coincidence Points of Tuples of Set-Valued Maps
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 72
EP  - 77
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a5/
LA  - ru
ID  - FAA_2018_52_2_a5
ER  - 
%0 Journal Article
%A B. D. Gel'man
%T Periodic Trajectories and Coincidence Points of Tuples of Set-Valued Maps
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 72-77
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a5/
%G ru
%F FAA_2018_52_2_a5
B. D. Gel'man. Periodic Trajectories and Coincidence Points of Tuples of Set-Valued Maps. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 72-77. http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a5/