Periodic Trajectories and Coincidence Points of Tuples of Set-Valued Maps
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 72-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

A fixed-point theorem is proved for a finite composition of set-valued Lipschitz maps such that the product of their Lipschitz constants is less than 1. The notion of a Lipschitz tuple of (finitely many) set-valued maps is introduced; it is proved that such a tuple has a periodic trajectory, which determines a fixed point of the given composition of set-valued Lipschitz maps. This result is applied to study the coincidence points of a pair of tuples (Lipschitz and covering).
Keywords: set-valued map, Hausdorff metric, Lipschitz set-valued map, fixed point, surjective operator.
@article{FAA_2018_52_2_a5,
     author = {B. D. Gel'man},
     title = {Periodic {Trajectories} and {Coincidence} {Points} of {Tuples} of {Set-Valued} {Maps}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {72--77},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a5/}
}
TY  - JOUR
AU  - B. D. Gel'man
TI  - Periodic Trajectories and Coincidence Points of Tuples of Set-Valued Maps
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 72
EP  - 77
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a5/
LA  - ru
ID  - FAA_2018_52_2_a5
ER  - 
%0 Journal Article
%A B. D. Gel'man
%T Periodic Trajectories and Coincidence Points of Tuples of Set-Valued Maps
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 72-77
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a5/
%G ru
%F FAA_2018_52_2_a5
B. D. Gel'man. Periodic Trajectories and Coincidence Points of Tuples of Set-Valued Maps. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 72-77. http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a5/

[1] S. B. Nadler, Pasif. J. Math., 30:2 (1969), 475–488 | DOI | Zbl

[2] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M, 1974 | MR

[3] B. D. Gelman, Funkts. analiz i ego pril., 35:3 (2001), 28–35 | DOI | MR | Zbl

[4] B. D. Gelman, Vestnik VGU, seriya fizika, matematika, 2009, no. 1, 74–86 | Zbl

[5] S. A. Marano, Rend. Circ. Mat. Palermo, Suppl., 48 (1997), 171–177 | Zbl

[6] A. V. Arutyunov, Dokl. RAN, 416:2 (2007), 151–155 | Zbl

[7] A. V. Arutyunov, B. D. Gelman, Matem. sb., 206:3 (2015), 35–56 | DOI | MR | Zbl

[8] E. S. Zhukovskii, Matem. zametki, 100:3 (2016), 344–362 | DOI | MR | Zbl

[9] A. V. Arutyunov, Dokl. RAN, 455:4 (2014), 379–383 | DOI | Zbl

[10] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga (URSS), M., 2005 | MR

[11] A. V. Arutyunov, Lektsii po vypuklomu i mnogoznachnomu analizu, Fizmatlit, M., 2014