@article{FAA_2018_52_2_a3,
author = {V. V. Krylov},
title = {Integrable {Crystals} and {Restriction} to {Levi} {Subgroups} {Via} {Generalized} {Slices} in the {Affine} {Grassmannian}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {40--65},
year = {2018},
volume = {52},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a3/}
}
TY - JOUR AU - V. V. Krylov TI - Integrable Crystals and Restriction to Levi Subgroups Via Generalized Slices in the Affine Grassmannian JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2018 SP - 40 EP - 65 VL - 52 IS - 2 UR - http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a3/ LA - ru ID - FAA_2018_52_2_a3 ER -
V. V. Krylov. Integrable Crystals and Restriction to Levi Subgroups Via Generalized Slices in the Affine Grassmannian. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 40-65. http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a3/
[1] A. Braverman, “Spaces of quasi-maps into the flag varieties and their applications”, ICM 2006 Proceedings, Madrid, Eur. Math. Soc., Zürich, 2006, 1145–1170 | MR | Zbl
[2] A. Beilinson, V. Drinfeld, Quantization of Hitchin's integrable system and Hecke eigen-sheaves http://math.uchicago.edu/~mitya/langlands/hitchin/BD-hitchin
[3] A. Braverman, M. Finkelberg, “Pursuing the double affine Grassmannian. I: Transversal slices via instantons on $A_k$-singularities”, Duke Math. J., 152:2 (2010), 175–206 | DOI | MR | Zbl
[4] A. Braverman, M. Finkelberg, D. Kazhdan, “Affine Gindikin–Karpelevich formula via Uhlenbeck spaces”, Springer Proc. in Math. and Statistics, 9, 2012, 17–29 | DOI | MR | Zbl
[5] A. Braverman, M. Finkelberg, H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional $\mathcal{N}=4$ gauge theories, II, arXiv: 1601.03586 | MR
[6] A. Braverman, M. Finkelberg, D. Gaitsgory, I. Mirković, “Intersection cohomology of Drinfeld's compactifications”, Selecta Math., 8:3 (2002), 381–418 | DOI | MR | Zbl
[7] A. Braverman, D. Gaitsgory, “Crystals via the affine Grassmannian”, Duke Math. J., 107:3 (2001), 561–575 | DOI | MR | Zbl
[8] T. Braden, “Hyperbolic localization of intersection cohomology”, Transformation Groups, 8:3 (2003), 209–216 | DOI | MR | Zbl
[9] M. Finkelberg, J. Kamnitzer, K. Pham, L. Rybnikov, A. Weekes, “Comultiplication for shifted Yangians and quantum open Toda lattice”, Adv. Math., 327 (2018), 349–389 ; arXiv: 1608.03331 | DOI | MR | Zbl | MR
[10] M. Finkelberg, I. Mirković, “Semi-infinite flags. I. Case of global curve $\mathbb{P}^1$”, Amer. Math. Soc. Transl. Ser. 2, 194 (1999), 81–112 | MR | Zbl
[11] V. Ginzburg, Perverse sheaves on a loop group and Langlands' duality, arXiv: 9511007 | MR
[12] A. Joseph, Quantum Groups and Their Primitive Ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 29, Springer-Verlag, Berlin, 1995 | MR | Zbl
[13] M. Kashiwara, “On crystal bases”, CMS Conf. Proc., 16, Amer. Math. Soc., Providence, RI, 1995, 155–197 | MR | Zbl
[14] M. Kashiwara, T. Tanisaki, “Kazhdan–Lusztig conjecture for affine Lie algebras with negative level”, Duke Math. J., 77:1 (1995), 21–62 | DOI | MR | Zbl
[15] I. Mirković, K. Vilonen, “Geometric Langlands duality and representations of algebraic groups over commutative rings”, Ann. of Math. (2), 166:1 (2007), 95–143 | DOI | MR | Zbl