Integrable Crystals and Restriction to Levi Subgroups Via Generalized Slices in the Affine Grassmannian
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 40-65
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a connected reductive algebraic group over $\mathbb{C}$, and let $\Lambda^{+}_{G}$ be the monoid of dominant weights of $G$. We construct integrable crystals $\mathbf{B}^{G}(\lambda)$, $\lambda\in\Lambda^+_G$, using the geometry of generalized transversal slices in the affine Grassmannian of the Langlands dual group of $G$. We also construct tensor product maps $\mathbf{p}_{\lambda_{1},\lambda_{2}}\colon\mathbf{B}^{G}(\lambda_1)\otimes\mathbf{B}^{G}(\lambda_2) \to\mathbf{B}^{G}(\lambda_{1}+\lambda_{2})\cup\{0\}$ in terms of multiplication in generalized transversal slices. Let $L \subset G$> be a Levi subgroup of $G$. We describe the functor $\operatorname{Res}^G_L\colon\operatorname{Rep}(G)\to\operatorname{Rep}(L)$ of restriction to $L$ in terms of the hyperbolic localization functors for generalized transversal slices.
Keywords:
affine Grassmannian, Kashiwara crystals, geometric Satake isomorphism, generalized slices.
@article{FAA_2018_52_2_a3,
author = {V. V. Krylov},
title = {Integrable {Crystals} and {Restriction} to {Levi} {Subgroups} {Via} {Generalized} {Slices} in the {Affine} {Grassmannian}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {40--65},
publisher = {mathdoc},
volume = {52},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a3/}
}
TY - JOUR AU - V. V. Krylov TI - Integrable Crystals and Restriction to Levi Subgroups Via Generalized Slices in the Affine Grassmannian JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2018 SP - 40 EP - 65 VL - 52 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a3/ LA - ru ID - FAA_2018_52_2_a3 ER -
%0 Journal Article %A V. V. Krylov %T Integrable Crystals and Restriction to Levi Subgroups Via Generalized Slices in the Affine Grassmannian %J Funkcionalʹnyj analiz i ego priloženiâ %D 2018 %P 40-65 %V 52 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a3/ %G ru %F FAA_2018_52_2_a3
V. V. Krylov. Integrable Crystals and Restriction to Levi Subgroups Via Generalized Slices in the Affine Grassmannian. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 40-65. http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a3/