Integrable Crystals and Restriction to Levi Subgroups Via Generalized Slices in the Affine Grassmannian
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 40-65

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a connected reductive algebraic group over $\mathbb{C}$, and let $\Lambda^{+}_{G}$ be the monoid of dominant weights of $G$. We construct integrable crystals $\mathbf{B}^{G}(\lambda)$, $\lambda\in\Lambda^+_G$, using the geometry of generalized transversal slices in the affine Grassmannian of the Langlands dual group of $G$. We also construct tensor product maps $\mathbf{p}_{\lambda_{1},\lambda_{2}}\colon\mathbf{B}^{G}(\lambda_1)\otimes\mathbf{B}^{G}(\lambda_2) \to\mathbf{B}^{G}(\lambda_{1}+\lambda_{2})\cup\{0\}$ in terms of multiplication in generalized transversal slices. Let $L \subset G$> be a Levi subgroup of $G$. We describe the functor $\operatorname{Res}^G_L\colon\operatorname{Rep}(G)\to\operatorname{Rep}(L)$ of restriction to $L$ in terms of the hyperbolic localization functors for generalized transversal slices.
Keywords: affine Grassmannian, Kashiwara crystals, geometric Satake isomorphism, generalized slices.
@article{FAA_2018_52_2_a3,
     author = {V. V. Krylov},
     title = {Integrable {Crystals} and {Restriction} to {Levi} {Subgroups} {Via} {Generalized} {Slices} in the {Affine} {Grassmannian}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {40--65},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a3/}
}
TY  - JOUR
AU  - V. V. Krylov
TI  - Integrable Crystals and Restriction to Levi Subgroups Via Generalized Slices in the Affine Grassmannian
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 40
EP  - 65
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a3/
LA  - ru
ID  - FAA_2018_52_2_a3
ER  - 
%0 Journal Article
%A V. V. Krylov
%T Integrable Crystals and Restriction to Levi Subgroups Via Generalized Slices in the Affine Grassmannian
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 40-65
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a3/
%G ru
%F FAA_2018_52_2_a3
V. V. Krylov. Integrable Crystals and Restriction to Levi Subgroups Via Generalized Slices in the Affine Grassmannian. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 40-65. http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a3/