Elements of Potential Theory on Carnot Groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 94-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose and study elements of potential theory for the sub-Laplacian on homogeneous Carnot groups. In particular, we show the continuity of the single-layer potential and establish Plemelj-type jump relations for the double-layer potential. As a consequence, we derive a formula for the trace on smooth surfaces of the Newton potential for the sub-Laplacian. Using this, we construct a sub-Laplacian version of Kac's boundary value problem.
Keywords: sub-Laplacian, integral boundary condition, homogeneous Carnot group, Newton potential, layer potentials.
@article{FAA_2018_52_2_a10,
     author = {M. V. Ruzhansky and D. Suragan},
     title = {Elements of {Potential} {Theory} on {Carnot} {Groups}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {94--98},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a10/}
}
TY  - JOUR
AU  - M. V. Ruzhansky
AU  - D. Suragan
TI  - Elements of Potential Theory on Carnot Groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 94
EP  - 98
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a10/
LA  - ru
ID  - FAA_2018_52_2_a10
ER  - 
%0 Journal Article
%A M. V. Ruzhansky
%A D. Suragan
%T Elements of Potential Theory on Carnot Groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 94-98
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a10/
%G ru
%F FAA_2018_52_2_a10
M. V. Ruzhansky; D. Suragan. Elements of Potential Theory on Carnot Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 94-98. http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a10/

[1] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer-Verlag, Berlin–Heidelberg, 2007 | MR | Zbl

[2] D. Danielli, N. Garofalo, D. Nhieu, Adv. Math., 215 (2007), 292–378 | DOI | MR | Zbl

[3] V. Fischer, M. Ruzhansky, Fourier Analysis, Trends in Mathematics, Birkhäuser, 2014, 107–132 | Zbl

[4] V. Fischer, M. Ruzhansky, C. R. Acad. Sci. Paris, Ser I, 352:3 (2014), 197–204 | DOI | MR | Zbl

[5] V. Fischer, M. Ruzhansky, Quantization on nilpotent Lie groups, Progress in Mathematics, 314, Birkhäuser, 2016 | DOI | MR | Zbl

[6] G. B. Folland, Ark. Mat., 13:2 (1975), 161–207 | DOI | MR | Zbl

[7] G. B. Folland, Comm. Partial Differential Equations, 2:2 (1977), 165–191 | DOI | MR | Zbl

[8] G. B. Folland, E. M. Stein, Comm. Pure Appl. Math., 27 (1974), 429–522 | DOI | MR | Zbl

[9] D. S. Jerison, J. Funct. Anal., 43 (1981), 97–142, 224–257 | DOI | MR | Zbl

[10] M. Kac, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley and Los Angeles, 1951, 189–215

[11] M. Kac, Integration in function spaces and some of its applications, Lezioni Fermiane. [Fermi Lectures], Accademia Nazionale dei Lincei, Pisa, 1980 | MR | Zbl

[12] T. Sh. Kalmenov, D. Suragan, Dokl. RAN, 428:1 (2009), 16–19 | Zbl

[13] T. Sh. Kalmenov, D. Suragan, Differential Equations, 48:4 (2012), 604–608 | DOI | MR | Zbl

[14] C. Romero, Potential theory for the Kohn Laplacian on the Heisenberg group, PhD thesis, University of Minnesota, 1991 | MR

[15] L. P. Rothschild, E. M. Stein, Acta Math., 137:3–4 (1976), 247–320 | DOI | MR

[16] M. Ruzhansky, D. Suragan, Adv. Math., 308 (2017), 483–528 ; arXiv: 1512.02547 | DOI | MR | Zbl

[17] M. Ruzhansky, D. Suragan, Proc. Amer. Math. Soc., 144:2 (2016), 709–721 | DOI | MR | Zbl

[18] M. Ruzhansky, V. Turunen, Pseudo-differential operators and symmetries. Background analysis and advanced topics, Pseudo-Differential Operators. Theory and Applications, 2, Birkhäuser Verlag, Basel, 2010 | MR | Zbl