Degeneration of Horospheres in Spherical Homogeneous Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

Horospheres for an action of a semisimple algebraic group $G$ on an affine variety $X$ are the generic orbits of a maximal unipotent subgroup $U\subset G$ or, equivalently, the generic fibers of the categorical quotient of the variety $X$ by the action of $U$, which is defined by the values of the highest weight functions. The remaining fibers of this quotient (which we call degenerate horospheres) for a certain class of spherical $G$-varieties containing all simply connected symmetric spaces are studied.
Mots-clés : semisimple Lie group
Keywords: homogeneous space, horosphere, spherical variety, symmetric space.
@article{FAA_2018_52_2_a0,
     author = {E. B. Vinberg and S. G. Gindikin},
     title = {Degeneration of {Horospheres} in {Spherical} {Homogeneous} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a0/}
}
TY  - JOUR
AU  - E. B. Vinberg
AU  - S. G. Gindikin
TI  - Degeneration of Horospheres in Spherical Homogeneous Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 3
EP  - 14
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a0/
LA  - ru
ID  - FAA_2018_52_2_a0
ER  - 
%0 Journal Article
%A E. B. Vinberg
%A S. G. Gindikin
%T Degeneration of Horospheres in Spherical Homogeneous Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 3-14
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a0/
%G ru
%F FAA_2018_52_2_a0
E. B. Vinberg; S. G. Gindikin. Degeneration of Horospheres in Spherical Homogeneous Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 3-14. http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a0/

[1] M. Brion, “Quelques propriétés des espaces homogènes sphériques”, Manuscripta Math., 55:2 (1986), 191–198 | DOI | MR | Zbl

[2] E. B. Vinberg, “Slozhnost deistvii peduktivnykh gpupp”, Funkts. analiz i ego pril., 20:1 (1986), 1–13 | MR | Zbl

[3] E. B. Vinberg, “Kommutativnye odnopodnye ppostpanstva i koizotpopnye simplekticheskie deistviya”, UMN, 56:1 (2001), 3–62 | DOI | MR | Zbl

[4] E. B. Vinberg, “Equivariant symplectic geometry of cotangent bundles”, Moscow Math. J., 1:2 (2001), 287–299 | DOI | MR | Zbl

[5] E. B. Vinberg, B. N. Kimelfeld, “Odnorodnye oblasti na flagovykh mnogoobraziyakh i sfericheskie podgruppy poluprostykh grupp Li”, Funkts. analiz i ego pril., 12:3 (1978), 12–19 | MR

[6] E. B. Vinberg, V. L. Popov, “Ob odnom klasse kvaziodnopodnykh algebpaicheskikh mnogoobpazii”, Izv. AN SSSR, 36:4 (1972), 749–763

[7] E. B. Vinberg, V. L. Popov, “Teoriya invariantov”, Algebraicheskaya geometriya–4, Itogi nauki i tekhniki. Sovrem. problemy matematiki. Fundam. napravleniya, 55, VINITI, M., 1989, 137–309

[8] F. Knop, “Über Bewertungen, welche unter einer reduktiven Gruppe invariant sind”, Math. Ann., 295:1 (1993), 333–363 | DOI | MR | Zbl

[9] M. Krämer, “Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen”, Compositio Math., 38 (1979), 129–153 | MR | Zbl

[10] E. V. Misyureva, “O sfericheskikh predstavleniyakh poluprostykh veschestvennykh grupp Li”, Voprosy teorii grupp i gomologicheskoi algebry, Yaroslavl, 1987, 139–142 | MR | Zbl

[11] D. I. Panyushev, “Parabolic subgroups with Abelian unipotent radical as a testing site for invariant theory”, Canad. J. Math., 51 (1999), 616–635 | DOI | MR | Zbl

[12] V. L. Popov, “Styagivanie deistvii reduktivnykh algebraicheskikh grupp”, Matem. sb., 130:3 (1986), 310–334 | MR | Zbl

[13] C. Chevalley, Fondaments de la géometrie algébrique, Secrétariat Math., Paris, 1958 | MR