On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 76-79
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that, for any compact set $K\subset\mathbb{R}^n$ ($n\ge 2$) of positive Lebesgue measure and any bounded domain $G\supset K$, there exists a function in the Hölder class $C^{1, 1}(G)$ that is a solution of the minimal surface equation in $G\setminus K$ and cannot be extended from $G\setminus K$ to $G$ as a solution of this equation.
Keywords:
minimal surface equation, Hölder class, removable set, nonlinear mapping, Schauder theorem, fixed point.
@article{FAA_2018_52_1_a8,
author = {A. V. Pokrovskii},
title = {On {Singular} {Points} of {Solutions} of the {Minimal} {Surface} {Equation} on {Sets} of {Positive} {Measure}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {76--79},
publisher = {mathdoc},
volume = {52},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a8/}
}
TY - JOUR AU - A. V. Pokrovskii TI - On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2018 SP - 76 EP - 79 VL - 52 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a8/ LA - ru ID - FAA_2018_52_1_a8 ER -
A. V. Pokrovskii. On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 76-79. http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a8/