Invariant Subspaces for Commuting Operators on a Real Banach Space
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 65-69

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the commutative algebra $\mathcal{A}$ of operators on a reflexive real Banach space has an invariant subspace if each operator $T\in\mathcal{A}$ satisfies the condition $$ \|1-\varepsilon T^2\|_e\le 1+o(\varepsilon)\ \text{as}\ \varepsilon\searrow 0 $$ where $\|\cdot\|_e$ denotes the essential norm. This implies the existence of an invariant subspace for any commutative family of essentially self-adjoint operators on a real Hilbert space.
Keywords: Banach space, algebra of operators, invariant subspace.
@article{FAA_2018_52_1_a6,
     author = {V. I. Lomonosov and V. S. Shul'man},
     title = {Invariant {Subspaces} for {Commuting} {Operators} on a {Real} {Banach} {Space}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {65--69},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a6/}
}
TY  - JOUR
AU  - V. I. Lomonosov
AU  - V. S. Shul'man
TI  - Invariant Subspaces for Commuting Operators on a Real Banach Space
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 65
EP  - 69
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a6/
LA  - ru
ID  - FAA_2018_52_1_a6
ER  - 
%0 Journal Article
%A V. I. Lomonosov
%A V. S. Shul'man
%T Invariant Subspaces for Commuting Operators on a Real Banach Space
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 65-69
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a6/
%G ru
%F FAA_2018_52_1_a6
V. I. Lomonosov; V. S. Shul'man. Invariant Subspaces for Commuting Operators on a Real Banach Space. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 65-69. http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a6/