Invariant Subspaces for Commuting Operators on a Real Banach Space
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 65-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the commutative algebra $\mathcal{A}$ of operators on a reflexive real Banach space has an invariant subspace if each operator $T\in\mathcal{A}$ satisfies the condition $$ \|1-\varepsilon T^2\|_e\le 1+o(\varepsilon)\ \text{as}\ \varepsilon\searrow 0 $$ where $\|\cdot\|_e$ denotes the essential norm. This implies the existence of an invariant subspace for any commutative family of essentially self-adjoint operators on a real Hilbert space.
Keywords: Banach space, algebra of operators, invariant subspace.
@article{FAA_2018_52_1_a6,
     author = {V. I. Lomonosov and V. S. Shul'man},
     title = {Invariant {Subspaces} for {Commuting} {Operators} on a {Real} {Banach} {Space}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {65--69},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a6/}
}
TY  - JOUR
AU  - V. I. Lomonosov
AU  - V. S. Shul'man
TI  - Invariant Subspaces for Commuting Operators on a Real Banach Space
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 65
EP  - 69
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a6/
LA  - ru
ID  - FAA_2018_52_1_a6
ER  - 
%0 Journal Article
%A V. I. Lomonosov
%A V. S. Shul'man
%T Invariant Subspaces for Commuting Operators on a Real Banach Space
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 65-69
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a6/
%G ru
%F FAA_2018_52_1_a6
V. I. Lomonosov; V. S. Shul'man. Invariant Subspaces for Commuting Operators on a Real Banach Space. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 65-69. http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a6/

[1] M. S. Livshits, Matem. sb., 34(76):1 (1954), 145–198 | MR

[2] L. A. Sakhnovich, Izv. vuzov, matem., 1959, no. 4, 141–149 | Zbl

[3] I. Ts. Gokhberg, M. G. Krein, Dokl. AN SSSR, 128:2 (1959), 227–230 | Zbl

[4] V. I. Matsaev, Dokl. AN SSSR, 139:4 (1961), 810–814

[5] J. Schwartz, Comm. Pure Appl. Math., 15 (1962), 159–172 | DOI | MR | Zbl

[6] V. I. Matsaev, Dokl. AN SSSR, 139:3 (1961), 548–552

[7] V. Lomonosov, Proc. Amer. Math. Soc., 115:3 (1992), 775–777 | DOI | MR | Zbl

[8] V. Lomonosov, Israel J. Math., 75:2–3 (1991), 329–339 | DOI | MR | Zbl

[9] A. Simonič, Trans. Amer. Math. Soc., 348:3 (1996), 975–995 | DOI | MR | Zbl

[10] A. Atzmon, Ann. Inst. Fourier, 51:5 (2001), 1407–1418 | DOI | MR | Zbl

[11] A. Atzmon, G. Godefroy, N. J. Kalton, Positivity, 8:2 (2004), 101–107 | DOI | MR | Zbl

[12] S. Grivaux, Bull. Sci. Math., 126:8 (2002), 681–691 | DOI | MR | Zbl

[13] V. I. Lomonosov, J. Math. Anal. Appl., 245:1 (2000), 221–224 | DOI | MR | Zbl

[14] V. I. Lomonosov, Funkts. analiz i ego pril., 7:3 (1973), 55–56 | MR

[15] M. Lindström, G. Shlüchtermann, Canad. Math. Bull., 43:1 (2000), 87–89 | DOI | MR | Zbl

[16] H. Radjavi, P. Rosenthal, Invariant Subspaces, Springer-Verlag, New York–Heidelberg, 1973 | MR | Zbl

[17] E. Bishop, R. R. Phelps, Proc. Symp. Pure Math., 7, Amer. Math. Soc., Providence, RI, 1962, 27–35 | DOI

[18] R. R. Phelps, Lecture Notes in Pure and Applied Math., 136, 1992, 337–340 | MR | Zbl