Duhamel Algebras and Applications
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce Duhamel algebras and study their properties and applications. We prove that a Banach space of analytic functions on the unit disc that satisfy certain conditions is a Duhamel algebra and describe its closed ideals. These results substantially generalize and improve the main results of Wigley's papers. Some other related questions are also discussed.
Keywords: Duhamel algebra, closed ideal, Hardy space, Banach space of analytic functions, invariant subspace.
@article{FAA_2018_52_1_a0,
     author = {M. T. Karaev},
     title = {Duhamel {Algebras} and {Applications}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a0/}
}
TY  - JOUR
AU  - M. T. Karaev
TI  - Duhamel Algebras and Applications
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 3
EP  - 12
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a0/
LA  - ru
ID  - FAA_2018_52_1_a0
ER  - 
%0 Journal Article
%A M. T. Karaev
%T Duhamel Algebras and Applications
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 3-12
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a0/
%G ru
%F FAA_2018_52_1_a0
M. T. Karaev. Duhamel Algebras and Applications. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a0/

[2] A. Aleman, B. Korenblum, “Volterra invariant subspaces of $H^{p}$”, Bull. Sci. Math., 132:6 (2008), 510–528 | DOI | MR | Zbl

[3] A. Biswas, A. Lambert, S. Petrovic, “Extended eigenvalues and the Volterra operator”, Glasg. Math. J., 44:3 (2002), 521–534 | DOI | MR | Zbl

[4] I. Yu. Domanov, M. M. Malamud, “On the spectral analysis of direct sums of Riemann–Liouville operators in Sobolev spaces of vector functions”, Integral Equtions Operator Theory, 63:2 (2009), 181–215 | DOI | MR | Zbl

[5] H. Guediri, M. T. Garayev, H. Sadraoui, “The Bergman space as a Banach algebra”, New York J. Math., 21 (2015), 339–350 | MR | Zbl

[6] B. Hollenbeck, I. E. Verbitsky, “Best constants for the Riesz projection”, J. Funct. Anal., 175:2 (2000), 370–392 | DOI | MR | Zbl

[7] M. T. Karaev, “Invariant subspaces, cyclic vectors, commutant and extended eigenvectors of some convolution operators”, Methods Funct. Anal. Topology, 11:1 (2005), 48–59 | MR | Zbl

[8] M. T. Karaev, M. Gürdal, S. Saltan, “Some applications of Banach algebras techniques”, Math. Nachr., 284:13 (2011), 1678–1689 | DOI | MR | Zbl

[9] M. T. Karaev, “On extended eigenvalues and extended eigenvectors of some operator classes”, Proc. Amer. Math. Soc., 134:6 (2006), 2383–2392 | DOI | MR | Zbl

[10] Yu. Linchuk, “On derivation operators with respect to the Duhamel convolution in the space of analytic functions”, Math. Commun., 20:1 (2015), 17–22 | MR | Zbl

[11] M. M. Malamud, “Invariant and hyperinvariant subspaces of direct sums of simple Volterra operators”, Oper. Theory Adv. Appl., 102, Birkhaüser, Basel, 1998, 143–167 | MR | Zbl

[12] M. M. Malamud, “Podobie volterrovykh operatorov i smezhnye voprosy teorii differentsialnykh uravnenii drobnykh poryadkov”, Trudy MMO, 55 (1994), 73–148 | Zbl

[13] K. G. Merryfield, S. Watson, “A local algebra structure for $H^{p} $ of the polydisc”, Colloq. Math., 62:1 (1991), 73–79 | DOI | MR | Zbl

[14] N. K. Nikolskii, “Izbrannye zadachi vesovoi approksimatsii i spektralnogo analiza”, Trudy MIAN, 120, 1974 | MR

[15] N. M. Wigley, “The Duhamel product of analytic functions”, Duke Math. J., 41 (1974), 211–217 | DOI | MR | Zbl

[16] N. M. Wigley, “A Banach algebra structure for $H^{p}$”, Canad. Math. Bull., 18 (1975), 597–603 | DOI | MR | Zbl