A class of Banach algebras of generalized matrices
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 4, pp. 62-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a class of Banach algebras of generalized matrices and study the existence of approximate units, ideal structure, and derivations of these algebras.
Keywords: Banach algebra, generalized matrix, approximate unit, ideal, derivation.
@article{FAA_2017_51_4_a5,
     author = {M. M. Sadr},
     title = {A class of {Banach} algebras of generalized matrices},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {62--71},
     publisher = {mathdoc},
     volume = {51},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a5/}
}
TY  - JOUR
AU  - M. M. Sadr
TI  - A class of Banach algebras of generalized matrices
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2017
SP  - 62
EP  - 71
VL  - 51
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a5/
LA  - ru
ID  - FAA_2017_51_4_a5
ER  - 
%0 Journal Article
%A M. M. Sadr
%T A class of Banach algebras of generalized matrices
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2017
%P 62-71
%V 51
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a5/
%G ru
%F FAA_2017_51_4_a5
M. M. Sadr. A class of Banach algebras of generalized matrices. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 4, pp. 62-71. http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a5/

[1] W. G. Bade, H. G. Dales, Z. A. Lykova, “Algebraic and strong splittings of extensions of Banach algebras”, Mem. Amer. Math. Soc., 137:656 (1999) | MR

[2] S. Beaver, Banach Algebras of Integral Operators, Off-Diagonal Decay, and Applications in Wireless Communications, PhD thesis, University of California

[3] T. Eisner, B. Farkas, M. Haase, R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Graduate Texts in Math, 272, Springer, Cham, 2015 | DOI | MR | Zbl

[4] F. Ghahramani, R. J. Loy, “Generalized notions of amenability”, J. Funct. Anal., 208:1 (2004), 229–260 | DOI | MR | Zbl

[5] P. R. Halmos, V. S. Sunder, Bounded Integral Operators on $L^2$ Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 96, Springer Science Business Media, Berlin–Heidelberg, 2012 | MR

[6] K. H. Hofmann, S. A. Morris, The Structure of Compact Groups: A Primer for Students—A Handbook for the Expert, De Gruyter Studies in Mathematics, 25, Walter de Gruyter, Berlin, 2006 | DOI | MR

[7] T. Hytönen, J. van Neerven, M. Veraar, L. Weis, Analysis in Banach space, v. 1, A Series of Modern Surveys in Mathematics, 63, Martingales and Littlewood–Paley Theory, Springer, Cham, 2016 | MR

[8] V. L. Klee, “Invariant metrics in groups (solution of a problem of Banach)”, Proc. Amer. Math. Soc., 3:3 (1952), 484–487 | DOI | MR | Zbl