@article{FAA_2017_51_4_a5,
author = {M. M. Sadr},
title = {A class of {Banach} algebras of generalized matrices},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {62--71},
year = {2017},
volume = {51},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a5/}
}
M. M. Sadr. A class of Banach algebras of generalized matrices. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 4, pp. 62-71. http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a5/
[1] W. G. Bade, H. G. Dales, Z. A. Lykova, “Algebraic and strong splittings of extensions of Banach algebras”, Mem. Amer. Math. Soc., 137:656 (1999) | MR
[2] S. Beaver, Banach Algebras of Integral Operators, Off-Diagonal Decay, and Applications in Wireless Communications, PhD thesis, University of California
[3] T. Eisner, B. Farkas, M. Haase, R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Graduate Texts in Math, 272, Springer, Cham, 2015 | DOI | MR | Zbl
[4] F. Ghahramani, R. J. Loy, “Generalized notions of amenability”, J. Funct. Anal., 208:1 (2004), 229–260 | DOI | MR | Zbl
[5] P. R. Halmos, V. S. Sunder, Bounded Integral Operators on $L^2$ Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 96, Springer Science Business Media, Berlin–Heidelberg, 2012 | MR
[6] K. H. Hofmann, S. A. Morris, The Structure of Compact Groups: A Primer for Students—A Handbook for the Expert, De Gruyter Studies in Mathematics, 25, Walter de Gruyter, Berlin, 2006 | DOI | MR
[7] T. Hytönen, J. van Neerven, M. Veraar, L. Weis, Analysis in Banach space, v. 1, A Series of Modern Surveys in Mathematics, 63, Martingales and Littlewood–Paley Theory, Springer, Cham, 2016 | MR
[8] V. L. Klee, “Invariant metrics in groups (solution of a problem of Banach)”, Proc. Amer. Math. Soc., 3:3 (1952), 484–487 | DOI | MR | Zbl