Logarithmic differential forms on varieties with singularities
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 4, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article we introduce the notion of logarithmic differential forms with poles along a Cartier divisor given on a variety with singularities, discuss some properties of such forms, and describe highly efficient methods for computing the Poincaré series and generators of modules of logarithmic differential forms in various situations. We also examine several concrete examples by applying these methods to the study of divisors on varieties with singularities of many types, including quasi-homogeneous complete intersections, normal, determinantal, and rigid varieties, and so on.
Keywords: logarithmic differential forms, de Rham lemma, normal varieties, PoincarГ© series, complete intersections, determinantal singularities, rigid singularities.
Mots-clés : fans
@article{FAA_2017_51_4_a0,
     author = {A. G. Aleksandrov},
     title = {Logarithmic differential forms on varieties with singularities},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {51},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a0/}
}
TY  - JOUR
AU  - A. G. Aleksandrov
TI  - Logarithmic differential forms on varieties with singularities
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2017
SP  - 3
EP  - 15
VL  - 51
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a0/
LA  - ru
ID  - FAA_2017_51_4_a0
ER  - 
%0 Journal Article
%A A. G. Aleksandrov
%T Logarithmic differential forms on varieties with singularities
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2017
%P 3-15
%V 51
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a0/
%G ru
%F FAA_2017_51_4_a0
A. G. Aleksandrov. Logarithmic differential forms on varieties with singularities. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 4, pp. 3-15. http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a0/

[1] A. G. Aleksandrov, “Kogomologiya kvaziodnorodnogo polnogo peresecheniya”, Izv. AN SSSR, ser. matem., 49:3 (1985), 467–510 | MR

[2] A. G. Aleksandrov, “Neizolirovannye osobennosti Saito”, Matem. sb., 137(179):4(12) (1988), 554–567 | Zbl

[3] A. G. Aleksandrov, “Nonisolated hypersurface singularities”, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990, 211–246 | MR

[4] A. G. Aleksandrov, “Logarithmic differential forms, torsion differentials and residue”, Complex Var. Theory Appl., 50:7–11 (2005), 777–802 | MR | Zbl

[5] A. G. Aleksandrov, “Residues of logarithmic differential forms in complex analysis and geometry”, Anal. Theory Appl., 30:1 (2014), 34–50 | DOI | MR | Zbl

[6] A. G. Aleksandrov, “Differentsialnye formy na kvaziodnorodnykh nepolnykh peresecheniyakh”, Funkts. analiz i ego pril., 50:1 (2016), 1–19 | DOI | MR | Zbl

[7] N. Burbaki, Kommutativnaya algebra, Mir, M., 1971 | MR

[8] G. de Rham, “Sur la division de formes et de courants par une forme linéaire”, Comment. Math. Helvet., 28 (1954), 346–352 | DOI | MR | Zbl

[9] V. Grandjean, “Coherent vector fields and logarithmic stratification”, Real and complex singularities, Proceedings of the 5th workshop (São Carlos, Brazil, July 27–31, 1998, Chapman Hall/CRC Res. Notes Math.), v. 412, Chapman Hall/CRC, Boca Raton, FL, 2000, 46–60 | MR | Zbl

[10] G.–M. Greuel, “Der Gauß–Manin–Zusammenhang isolierter Singularitäten von vollständigen Durchscnitten”, Math. Ann., 214:1 (1975), 235–266 | MR | Zbl

[11] D. Mamford, Lektsii o krivykh na algebraicheskikh poverkhnostyakh, Mir, M., 1968

[12] I. Naruki, “Some remarks on isolated singularities and their application to algebraic manifolds”, Publ. Res. Inst. Math. Sci., 13:1 (1977), 17–46 | DOI | MR | Zbl

[13] H. C. Pinkham, Deformations of algebraic varieties with $\mathbb G_m$-action, Astérisque, 20, Société Mathématique de France, Paris, 1974 | MR

[14] D. S. Rim, “Torsion differentials and deformations”, Trans. Amer. Math. Soc., 169:442 (1972), 257–278 | DOI | MR | Zbl

[15] K. Saito, “Theory of logarithmic differential forms and logarithmic vector fields”, J. Fac. Sci. Univ. Tokyo, sect. IA, 27:2 (1980), 265–291 | MR | Zbl