Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 3, pp. 87-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{O}\subset\mathbb{R}^d$ be a bounded domain of class $C^{1,1}$. Let $0\varepsilon\leqslant 1$. In $L_2(\mathcal{O};\mathbb{C}^n)$ we consider a positive definite strongly elliptic second-order operator $B_{D,\varepsilon}$ with Dirichlet boundary condition. Its coefficients are periodic and depend on $\mathbf{x}\varepsilon$. The principal part of the operator is given in factorized form, and the operator has lower order terms. We study the behavior of the generalized resolvent $(B_{D,\varepsilon}-\zeta Q_0(\cdot/\varepsilon))^{-1}$ as $\varepsilon \to 0$. Here the matrix-valued function $Q_0$ is periodic, bounded, and positive definite; $\zeta$ is a complex-valued parameter. We find approximations of the generalized resolvent in the $L_2(\mathcal{O};\mathbb{C}^n)$-operator norm and in the norm of operators acting from $L_2(\mathcal{O};\mathbb{C}^n)$ to the Sobolev space $H^1(\mathcal{O};\mathbb{C}^n)$ with two-parameter error estimates (depending on $\varepsilon$ and $\zeta$). Approximations of the generalized resolvent are applied to the homogenization of the solution of the first initial-boundary value problem for the parabolic equation $Q_0({\mathbf x}/\varepsilon)\partial_t {\mathbf v}_\varepsilon({\mathbf x},t)=- ( B_{D,\varepsilon} {\mathbf v}_\varepsilon)({\mathbf x},t)$.
Keywords: periodic differential operators, elliptic systems, parabolic systems, homogenization, operator error estimates.
@article{FAA_2017_51_3_a6,
     author = {Yu. M. Meshkova and T. A. Suslina},
     title = {Homogenization of the {Dirichlet} problem for elliptic and parabolic systems with periodic coefficients},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {87--93},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a6/}
}
TY  - JOUR
AU  - Yu. M. Meshkova
AU  - T. A. Suslina
TI  - Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2017
SP  - 87
EP  - 93
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a6/
LA  - ru
ID  - FAA_2017_51_3_a6
ER  - 
%0 Journal Article
%A Yu. M. Meshkova
%A T. A. Suslina
%T Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2017
%P 87-93
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a6/
%G ru
%F FAA_2017_51_3_a6
Yu. M. Meshkova; T. A. Suslina. Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 3, pp. 87-93. http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a6/

[1] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, Studies in Math. and Appl., 5, North-Holland, Amsterdam–New York, 1978 | MR | Zbl

[2] N. S. Bakhvalov, G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR

[3] E. Sanches-Palensia, Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[4] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR

[5] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 15:5 (2003), 1–108

[6] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 18:6 (2006), 1–130

[7] V. V. Zhikov, S. E. Pastukhova, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl

[8] V. V. Zhikov, S. E. Pastukhova, UMN, 71:3 (2016), 27–122 | DOI | MR | Zbl

[9] D. I. Borisov, Algebra i analiz, 20:2 (2008), 19–42

[10] T. A. Suslina, Algebra i analiz, 22:1 (2010), 108–222

[11] T. A. Suslina, Algebra i analiz, 27:4 (2015), 87–166 | MR

[12] Yu. M. Meshkova, T. A. Suslina, Appl. Anal., 95:7 (2016), 1413–1448 | DOI | MR | Zbl

[13] G. Griso, Asymptot. Anal., 40:3/4 (2004), 269–286 | MR | Zbl

[14] G. Griso, Anal. Appl., 4:1 (2006), 61–79 | DOI | MR | Zbl

[15] C. E. Kenig, F. Lin, Z. Shen, Arch. Rat. Mech. Anal., 203:3 (2012), 1009–1036 | DOI | MR | Zbl

[16] M. A. Pakhnin, T. A. Suslina, Algebra i analiz, 24:6 (2012), 139–177 | MR

[17] T. A. Suslina, Mathematika, 59:2 (2013), 463–476 | DOI | MR | Zbl

[18] T. A. Suslina, SIAM J. Math. Anal., 45:6 (2013), 3453-3493 | DOI | MR | Zbl

[19] T. A. Suslina, Funkts. analiz i ego pril., 38:4 (2004), 86-90 | DOI | MR | Zbl

[20] T. A. Suslina, Math. Model. Nat. Phenom., 5:4 (2010), 390-447 | DOI | MR | Zbl

[21] V. V. Zhikov, S. E. Pastukhova, Russ. J. Math. Phys., 13:2 (2006), 224–237 | DOI | MR | Zbl

[22] Yu. M. Meshkova, Algebra i analiz, 25:6 (2013), 125–177 | MR

[23] Yu. M. Meshkova, T. A. Suslina, Appl. Anal., 95:8 (2016), 1736–1775 | DOI | MR | Zbl

[24] J. Geng, Zh. Shen, J. Funct. Anal., 272:5 (2017), 2092–2113 | DOI | MR | Zbl

[25] Q. Xu, SIAM J. Math. Anal., 48:6 (2016), 3742–3788 | DOI | MR | Zbl

[26] W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[27] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[28] Yu. M. Meshkova, T. A. Suslina, Homogenization of the Dirichlet problem for elliptic systems: Two-parametric error estimates, arXiv: 1702.00550 | MR

[29] Yu. M. Meshkova, T. A. Suslina, Usrednenie pervoi nachalno-kraevoi zadachi dlya parabolicheskikh sistem: Operatornye otsenki pogreshnosti, preprint 6/2017, POMI http://www.pdmi.ras.ru/preprint/2017/rus-2017.html