Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 3, pp. 87-93

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{O}\subset\mathbb{R}^d$ be a bounded domain of class $C^{1,1}$. Let $0\varepsilon\leqslant 1$. In $L_2(\mathcal{O};\mathbb{C}^n)$ we consider a positive definite strongly elliptic second-order operator $B_{D,\varepsilon}$ with Dirichlet boundary condition. Its coefficients are periodic and depend on $\mathbf{x}\varepsilon$. The principal part of the operator is given in factorized form, and the operator has lower order terms. We study the behavior of the generalized resolvent $(B_{D,\varepsilon}-\zeta Q_0(\cdot/\varepsilon))^{-1}$ as $\varepsilon \to 0$. Here the matrix-valued function $Q_0$ is periodic, bounded, and positive definite; $\zeta$ is a complex-valued parameter. We find approximations of the generalized resolvent in the $L_2(\mathcal{O};\mathbb{C}^n)$-operator norm and in the norm of operators acting from $L_2(\mathcal{O};\mathbb{C}^n)$ to the Sobolev space $H^1(\mathcal{O};\mathbb{C}^n)$ with two-parameter error estimates (depending on $\varepsilon$ and $\zeta$). Approximations of the generalized resolvent are applied to the homogenization of the solution of the first initial-boundary value problem for the parabolic equation $Q_0({\mathbf x}/\varepsilon)\partial_t {\mathbf v}_\varepsilon({\mathbf x},t)=- ( B_{D,\varepsilon} {\mathbf v}_\varepsilon)({\mathbf x},t)$.
Keywords: periodic differential operators, elliptic systems, parabolic systems, homogenization, operator error estimates.
@article{FAA_2017_51_3_a6,
     author = {Yu. M. Meshkova and T. A. Suslina},
     title = {Homogenization of the {Dirichlet} problem for elliptic and parabolic systems with periodic coefficients},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {87--93},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a6/}
}
TY  - JOUR
AU  - Yu. M. Meshkova
AU  - T. A. Suslina
TI  - Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2017
SP  - 87
EP  - 93
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a6/
LA  - ru
ID  - FAA_2017_51_3_a6
ER  - 
%0 Journal Article
%A Yu. M. Meshkova
%A T. A. Suslina
%T Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2017
%P 87-93
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a6/
%G ru
%F FAA_2017_51_3_a6
Yu. M. Meshkova; T. A. Suslina. Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 3, pp. 87-93. http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a6/