An analogue of the big $q$-Jacobi polynomials in the algebra of symmetric functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 3, pp. 56-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known how to construct a system of symmetric orthogonal polynomials in an arbitrary finite number of variables from an arbitrary system of orthogonal polynomials on the real line. In the special case of the big $q$-Jacobi polynomials, the number of variables can be made infinite. As a result, in the algebra of symmetric functions, there arises an inhomogeneous basis whose elements are orthogonal with respect to some probability measure. This measure is defined on a certain space of infinite point configurations and hence determines a random point process.
Keywords: Big q-Jacobi polynomials, symmetric functions, Schur functions
Mots-clés : interpolation polynomials, beta distribution.
@article{FAA_2017_51_3_a3,
     author = {G. I. Olshanskii},
     title = {An analogue of the big $q${-Jacobi} polynomials in the algebra of symmetric functions},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {56--76},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a3/}
}
TY  - JOUR
AU  - G. I. Olshanskii
TI  - An analogue of the big $q$-Jacobi polynomials in the algebra of symmetric functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2017
SP  - 56
EP  - 76
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a3/
LA  - ru
ID  - FAA_2017_51_3_a3
ER  - 
%0 Journal Article
%A G. I. Olshanskii
%T An analogue of the big $q$-Jacobi polynomials in the algebra of symmetric functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2017
%P 56-76
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a3/
%G ru
%F FAA_2017_51_3_a3
G. I. Olshanskii. An analogue of the big $q$-Jacobi polynomials in the algebra of symmetric functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 3, pp. 56-76. http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a3/

[1] G. E. Andrews, R. Askey, “Another $q$-extension of the beta function”, Proc. Amer. Math. Soc., 81:1 (1981), 97–100 | MR | Zbl

[2] G. E. Andrews, R. Askey, “Classical orthogonal polynomials”, Polynômes orthogonaux et Applications, Lectures Notes in Math., 1171, Springer-Verlag, Berlin–Heidelberg, 1985, 36–62 | DOI | MR

[3] G. Gasper, M. Rahman, Basic hypergeometric series. Second edition, Encyclopedia of Mathematics and its Applications, 96, Cambridge Univ. Press, 2004 | MR

[4] V. Gorin, G. Olshanski, “A quantization of the harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal., 270:1 (2016), 375–418 | DOI | MR | Zbl

[5] F. Knop, “Symmetric and non-symmetric quantum Capelli polynomials”, Comm. Math. Helv., 72:1 (1997), 84–100 | DOI | MR | Zbl

[6] R. Koekoek, P. A. Lesky, R. F. Swarttouw, Hypergeometric orthogonal polynomials and their $q$-analogues, Springer-Verlag, Berlin, 2010 | MR | Zbl

[7] R. Koekoek, R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998; ; arXiv: http://aw.twi.tudelft.nl/~koekoek/askey/9602214

[8] T. H. Koornwinder, Additions to the formula lists in [6], arXiv: 1401.0815

[9] T. H. Koornwinder, “Okounkov's BC-type interpolation MacDonald polynomials and their $q$=1 limit”, Sém. Lothar. Combin., 72 (2014/15), B72a ; arXiv: 1408.5993 | MR | Zbl

[10] I. G. Macdonald, “Schur functions: theme and variations”, Sém. Lothar. Combin., 28 (1992), B28a | MR | Zbl

[11] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., The Clarendon Press, Oxford Univ. Press, Oxford, 1995 | MR

[12] A. Okounkov, “Binomial formula for Macdonald polynomials and applications”, Math. Res. Lett., 4:4 (1997), 533–553 | DOI | MR | Zbl

[13] A. Okounkov, “(Shifted) Macdonald polynomials: $q$-integral representation and combinatorial formula”, Comp. Math., 112:2 (1998), 147–182 | DOI | MR | Zbl

[14] A. Okounkov, “On Newton interpolation of symmetric functions: a characterization of interpolation Macdonald polynomials”, Adv. Appl. Math., 20:4 (1998), 395–428 | DOI | MR | Zbl

[15] A. Yu. Okunkov, “Zamechaniya o sparivanii Fure i binomialnoi formule dlya mnogochlenov Makdonalda”, Funkts. analiz i ego pril., 36:2 (2002), 62–68 | DOI | MR | Zbl

[16] A. Okunkov, G. Olshanskii, “Sdvinutye funktsii Shura”, Alegbra i analiz, 9:2 (1997), 73–146 | MR | Zbl

[17] G. Olshanski, “Laguerre and Meixner symmetric functions, and infinite-dimensional diffusion processes”, Zap. nauchn. semin. POMI, 378 (2010), 81–110 ; arXiv: 1009.2037 | MR

[18] G. Olshanski, “Laguerre and Meixner orthogonal bases in the algebra of symmetric functions”, Intern. Math. Res. Notices, 2012:16 (2012), 3615–3679 | DOI | MR | Zbl

[19] L. Petrov, “$\mathfrak{sl}(2)$ Operators and Markov processes on branching graphs”, J. Algebr. Comb., 38:3 (2013), 663–720 | DOI | MR | Zbl

[20] E. M. Rains, “$BC_n$ symmetric polynomials”, Transf. Groups, 10:1 (2005), 63–132 | DOI | MR | Zbl

[21] S. Sahi, “The spectrum of certain invariant differential operators associated to Hermitian symmetric spaces”, Lie theory and geometry, Progress Math., 123, Birkhäuser, Boston, 1994, 569–576 | MR | Zbl

[22] S. Sahi, “Interpolation, integrality, and a generalization of Macdonald's polynomials”, Intern. Math. Res. Notices, 1996:10 (1996), 457–471 | DOI | MR | Zbl