An analogue of the big $q$-Jacobi polynomials in the algebra of symmetric functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 3, pp. 56-76
Voir la notice de l'article provenant de la source Math-Net.Ru
It is well known how to construct a system of symmetric orthogonal polynomials in an arbitrary finite number of variables from an arbitrary system of orthogonal polynomials on the real line. In the special case of the big $q$-Jacobi polynomials, the number of variables can be made infinite. As a result, in the algebra of symmetric functions, there arises an inhomogeneous basis whose elements are orthogonal with respect to some probability measure. This measure is defined on a certain space of infinite point configurations and hence determines a random point process.
Keywords:
Big q-Jacobi polynomials, symmetric functions, Schur functions
Mots-clés : interpolation polynomials, beta distribution.
Mots-clés : interpolation polynomials, beta distribution.
@article{FAA_2017_51_3_a3,
author = {G. I. Olshanskii},
title = {An analogue of the big $q${-Jacobi} polynomials in the algebra of symmetric functions},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {56--76},
publisher = {mathdoc},
volume = {51},
number = {3},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a3/}
}
TY - JOUR AU - G. I. Olshanskii TI - An analogue of the big $q$-Jacobi polynomials in the algebra of symmetric functions JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2017 SP - 56 EP - 76 VL - 51 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a3/ LA - ru ID - FAA_2017_51_3_a3 ER -
G. I. Olshanskii. An analogue of the big $q$-Jacobi polynomials in the algebra of symmetric functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 3, pp. 56-76. http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a3/