Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2017_51_3_a3, author = {G. I. Olshanskii}, title = {An analogue of the big $q${-Jacobi} polynomials in the algebra of symmetric functions}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {56--76}, publisher = {mathdoc}, volume = {51}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a3/} }
TY - JOUR AU - G. I. Olshanskii TI - An analogue of the big $q$-Jacobi polynomials in the algebra of symmetric functions JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2017 SP - 56 EP - 76 VL - 51 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a3/ LA - ru ID - FAA_2017_51_3_a3 ER -
G. I. Olshanskii. An analogue of the big $q$-Jacobi polynomials in the algebra of symmetric functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 3, pp. 56-76. http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a3/
[1] G. E. Andrews, R. Askey, “Another $q$-extension of the beta function”, Proc. Amer. Math. Soc., 81:1 (1981), 97–100 | MR | Zbl
[2] G. E. Andrews, R. Askey, “Classical orthogonal polynomials”, Polynômes orthogonaux et Applications, Lectures Notes in Math., 1171, Springer-Verlag, Berlin–Heidelberg, 1985, 36–62 | DOI | MR
[3] G. Gasper, M. Rahman, Basic hypergeometric series. Second edition, Encyclopedia of Mathematics and its Applications, 96, Cambridge Univ. Press, 2004 | MR
[4] V. Gorin, G. Olshanski, “A quantization of the harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal., 270:1 (2016), 375–418 | DOI | MR | Zbl
[5] F. Knop, “Symmetric and non-symmetric quantum Capelli polynomials”, Comm. Math. Helv., 72:1 (1997), 84–100 | DOI | MR | Zbl
[6] R. Koekoek, P. A. Lesky, R. F. Swarttouw, Hypergeometric orthogonal polynomials and their $q$-analogues, Springer-Verlag, Berlin, 2010 | MR | Zbl
[7] R. Koekoek, R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998; ; arXiv: http://aw.twi.tudelft.nl/~koekoek/askey/9602214
[8] T. H. Koornwinder, Additions to the formula lists in [6], arXiv: 1401.0815
[9] T. H. Koornwinder, “Okounkov's BC-type interpolation MacDonald polynomials and their $q$=1 limit”, Sém. Lothar. Combin., 72 (2014/15), B72a ; arXiv: 1408.5993 | MR | Zbl
[10] I. G. Macdonald, “Schur functions: theme and variations”, Sém. Lothar. Combin., 28 (1992), B28a | MR | Zbl
[11] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., The Clarendon Press, Oxford Univ. Press, Oxford, 1995 | MR
[12] A. Okounkov, “Binomial formula for Macdonald polynomials and applications”, Math. Res. Lett., 4:4 (1997), 533–553 | DOI | MR | Zbl
[13] A. Okounkov, “(Shifted) Macdonald polynomials: $q$-integral representation and combinatorial formula”, Comp. Math., 112:2 (1998), 147–182 | DOI | MR | Zbl
[14] A. Okounkov, “On Newton interpolation of symmetric functions: a characterization of interpolation Macdonald polynomials”, Adv. Appl. Math., 20:4 (1998), 395–428 | DOI | MR | Zbl
[15] A. Yu. Okunkov, “Zamechaniya o sparivanii Fure i binomialnoi formule dlya mnogochlenov Makdonalda”, Funkts. analiz i ego pril., 36:2 (2002), 62–68 | DOI | MR | Zbl
[16] A. Okunkov, G. Olshanskii, “Sdvinutye funktsii Shura”, Alegbra i analiz, 9:2 (1997), 73–146 | MR | Zbl
[17] G. Olshanski, “Laguerre and Meixner symmetric functions, and infinite-dimensional diffusion processes”, Zap. nauchn. semin. POMI, 378 (2010), 81–110 ; arXiv: 1009.2037 | MR
[18] G. Olshanski, “Laguerre and Meixner orthogonal bases in the algebra of symmetric functions”, Intern. Math. Res. Notices, 2012:16 (2012), 3615–3679 | DOI | MR | Zbl
[19] L. Petrov, “$\mathfrak{sl}(2)$ Operators and Markov processes on branching graphs”, J. Algebr. Comb., 38:3 (2013), 663–720 | DOI | MR | Zbl
[20] E. M. Rains, “$BC_n$ symmetric polynomials”, Transf. Groups, 10:1 (2005), 63–132 | DOI | MR | Zbl
[21] S. Sahi, “The spectrum of certain invariant differential operators associated to Hermitian symmetric spaces”, Lie theory and geometry, Progress Math., 123, Birkhäuser, Boston, 1994, 569–576 | MR | Zbl
[22] S. Sahi, “Interpolation, integrality, and a generalization of Macdonald's polynomials”, Intern. Math. Res. Notices, 1996:10 (1996), 457–471 | DOI | MR | Zbl