On equivariant indices of 1-forms on varieties
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 3, pp. 22-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a $G$-invariant holomorphic $1$-form with an isolated singular point on a germ of a complex-analytic $G$-variety with an isolated singular point ($G$ is a finite group), its equivariant homological index and (reduced) equivariant radial index are defined as elements of the ring of complex representations of the group. We show that these indices coincide on a germ of a smooth complex analytic $G$-variety. This makes it possible to consider the difference between them as a version of the equivariant Milnor number of a germ of a $G$-variety with an isolated singular point.
Mots-clés : finite group actions, indices.
Keywords: invariant 1-forms
@article{FAA_2017_51_3_a1,
     author = {S. M. Gusein-Zade and F. I. Mamedova},
     title = {On equivariant indices of 1-forms on varieties},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {22--32},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a1/}
}
TY  - JOUR
AU  - S. M. Gusein-Zade
AU  - F. I. Mamedova
TI  - On equivariant indices of 1-forms on varieties
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2017
SP  - 22
EP  - 32
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a1/
LA  - ru
ID  - FAA_2017_51_3_a1
ER  - 
%0 Journal Article
%A S. M. Gusein-Zade
%A F. I. Mamedova
%T On equivariant indices of 1-forms on varieties
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2017
%P 22-32
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a1/
%G ru
%F FAA_2017_51_3_a1
S. M. Gusein-Zade; F. I. Mamedova. On equivariant indices of 1-forms on varieties. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 3, pp. 22-32. http://geodesic.mathdoc.fr/item/FAA_2017_51_3_a1/

[1] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii, v. 1, Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR

[2] W. Ebeling, S. M. Gusein-Zade, “On the index of a vector field at an isolated singularity”, The Arnoldfest (Toronto, ON, 1997), Fields Inst. Commun., 24, Amer. Math. Soc., Providence, RI, 1999, 141–152 | MR | Zbl

[3] W. Ebeling, S. M. Gusein-Zade, “Indices of $1$-forms on an isolated complete intersection singularity”, Mosc. Math. J., 3:2 (2003), 439–455 | DOI | MR | Zbl

[4] W. Ebeling, S. M. Gusein-Zade, “Indices of vector fields or 1-forms and characteristic numbers”, Bull. London Math. Soc., 37:5 (2005), 747–754 | DOI | MR | Zbl

[5] W. Ebeling, S. M. Gusein-Zade, “Radial index and Euler obstruction of a $1$-form on a singular variety”, Geom. Dedicata, 113 (2005), 231–241 | DOI | MR | Zbl

[6] W. Ebeling, S. M. Gusein-Zade, “Indices of vector fields and $1$-forms on singular varieties”, Global aspects of complex geometry, Springer-Verlag, Berlin, 2006, 129–169 | DOI | MR | Zbl

[7] W. Ebeling, S. M. Gusein-Zade, “Equivariant indices of vector fields and $1$-forms”, Eur. J. Math., 1:2 (2015), 286–301 | DOI | MR | Zbl

[8] W. Ebeling, S. M. Gusein-Zade, J. Seade, “Homological index for 1-forms and a Milnor number for isolated singularities”, Internat. J. Math., 15:9 (2004), 895–905 | DOI | MR | Zbl

[9] L. Giraldo, X. Gómez-Mont, “A law of conservation of number for local Euler characteristics”, Complex manifolds and hyperbolic geometry (Guanajuato, 2001), Contemp. Math., 311, Amer. Math. Soc., Providence, RI, 2002, 251–259 | DOI | MR | Zbl

[10] X. Gómez-Mont, “An algebraic formula for the index of a vector field on a hypersurface with an isolated singularity”, J. Algebraic Geom., 7:4 (1998), 731–752 | MR | Zbl

[11] G.-M. Greuel, “Der Gauß-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten”, Math. Ann., 214 (1975), 235–266 | DOI | MR | Zbl

[12] C. T. C. Wall, “A note on symmetry of singularities”, Bull. London Math. Soc., 12:3 (1980), 169–175 | DOI | MR | Zbl