On homogenization for non-self-adjoint locally periodic elliptic operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 2, pp. 92-96
Cet article a éte moissonné depuis la source Math-Net.Ru
In this note we consider the homogenization problem for a matrix locally periodic elliptic operator on $R^d$ of the form $\mathcal A^\varepsilon=-\operatorname{div}A(x,x/\varepsilon)\nabla$. The function $A$ is assumed to be Hölder continuous with exponent $s\in[0,1]$ in the “slow” variable and bounded in the “fast” variable. We construct approximations for $(A^\varepsilon-\mu)^{-1}$, including one with a corrector, and for $(-\Delta)^{s/2}(A^\varepsilon-\mu)^{-1}$ in the operator norm on $L_2(R^d)^n$. For $s\ne0$, we also give estimates of the rates of approximation.
Keywords:
homogenization, operator error estimates, locally periodic operators, effective operator, corrector.
@article{FAA_2017_51_2_a9,
author = {N. N. Senik},
title = {On homogenization for non-self-adjoint locally periodic elliptic operators},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {92--96},
year = {2017},
volume = {51},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a9/}
}
N. N. Senik. On homogenization for non-self-adjoint locally periodic elliptic operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 2, pp. 92-96. http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a9/
[1] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 17:6 (2005), 1–104
[2] D. I. Borisov, Algebra i analiz, 20:2 (2008), 19–42
[3] S. E. Pastukhova, R. N. Tikhomirov, Dokl. RAN, 415:3 (2007), 304–309 | Zbl
[4] N. N. Senik, Funkts. analiz i ego pril., 50:1 (2016), 85–89 | DOI | MR | Zbl
[5] N. N. Senik, SIAM J. Math. Anal., 49:2 (2017), 874–898 | DOI | MR | Zbl
[6] N. N. Senik, arXiv: 1703.02023