Spectra of $3\times 3$ upper triangular operator matrices
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 2, pp. 72-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let ${H}_1$, ${H}_2$, and ${H}_3$ be complex separable Hilbert spaces. Given $A\in {B}({H}_1)$, $B\in{B}({H}_2)$, and $C\in{B} ({H}_3)$, write $M_{D,E,F}=\left(\begin{smallmatrix} A D\\ 0 B\\ 00 \end{smallmatrix}\right)$, where $D\in {B}({H}_2,{H}_1)$, $E\in{B}({H}_3,{H}_1)$, and $F\in{B}({H}_3,{H}_2)$ are unknown operators. This paper gives a complete description of the intersection $\bigcap_{D,E,F} \sigma(M_{D,E,F})$, where $D$, $E$, and $F$ range over the respective sets of bounded linear operators. Further, we show that $\sigma(A)\cup\sigma(B)\cup\sigma(C)=\sigma(M_{D,E,F})\cup W$, where $W$ is the union of certain gaps in $\sigma(M_{D,E,F})$, which are subsets of $(\sigma(A)\cap\sigma(B))\cup(\sigma(B)\cap\sigma(C))\cup(\sigma(A) \cap\sigma(C))$. Finally, we obtain a necessary and sufficient condition for the relation $\sigma(M_{D,E,F})=\sigma(A)\cup\sigma(B)\cup\sigma(C)$ to hold for any $D$, $E$, and $F$.
Keywords: spectrum, $3\times 3$ upper triangular operator matrix.
Mots-clés : perturbation
@article{FAA_2017_51_2_a6,
     author = {Xiufeng Wu and Junjie Huang and Alatancang Chen},
     title = {Spectra of $3\times 3$ upper triangular operator matrices},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {72--82},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a6/}
}
TY  - JOUR
AU  - Xiufeng Wu
AU  - Junjie Huang
AU  - Alatancang Chen
TI  - Spectra of $3\times 3$ upper triangular operator matrices
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2017
SP  - 72
EP  - 82
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a6/
LA  - ru
ID  - FAA_2017_51_2_a6
ER  - 
%0 Journal Article
%A Xiufeng Wu
%A Junjie Huang
%A Alatancang Chen
%T Spectra of $3\times 3$ upper triangular operator matrices
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2017
%P 72-82
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a6/
%G ru
%F FAA_2017_51_2_a6
Xiufeng Wu; Junjie Huang; Alatancang Chen. Spectra of $3\times 3$ upper triangular operator matrices. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 2, pp. 72-82. http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a6/

[1] A. Ben-Israel, T. N. E. Greville, Generalized Inverses: Theory and Applications, Springer-Verlag, New York, 2003 | MR | Zbl

[2] J. B. Conway, A Course in Functional Analysis, Springer-Verlag, New York, 1985 | MR | Zbl

[3] H. Du, P. Jin, “Perturbation of spectrums of $2\times 2$ operator matrices”, Proc. Amer. Math. Soc., 121:3 (1994), 761–766 | MR | Zbl

[4] J. K. Han, H. Y. Lee, W. Y. Lee, “Invertible completions of $2\times 2$ upper triangular operator matrices”, Proc. Amer. Math. Soc., 128:1 (2000), 119–123 | DOI | MR | Zbl

[5] M. Barraa, M. Boumazgour, “A note on the spectrum of an upper triangular operator matrices”, Proc. Amer. Math. Soc., 131:10 (2003), 3083–3088 | DOI | MR | Zbl

[6] I. S. Hwang, W. Y. Lee, “The boundedness below of $2\times 2$ upper triangular operator matrices”, Integral Equations Operator Theory, 39:3 (2001), 267–276 | DOI | MR | Zbl

[7] S. V. Djordjevic, Y. M. Han, “A note on Weyl's theorem for operator matrices”, Proc. Amer. Math. Soc., 131:8 (2002), 2543–2547 | DOI | MR

[8] D. S. Djordjevic, “Perturbation of spectra of operator matrices”, J. Operator Theory, 48:3, suppl. (2002), 467–486 | MR | Zbl

[9] C. Benhida, E. H. Zerouali, H. Zguitti, “Spectra of upper triangular operator matrices”, Proc. Amer. Math. Soc., 133:10 (2005), 3013–3020 | DOI | MR | Zbl

[10] X. Cao, “Browder spectra for upper triangular operator matrices”, J. Math. Anal. Appl., 342:1 (2008), 477–484 | DOI | MR | Zbl