Spectra of $3\times 3$ upper triangular operator matrices
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 2, pp. 72-82
Voir la notice de l'article provenant de la source Math-Net.Ru
Let ${H}_1$, ${H}_2$, and ${H}_3$ be complex separable Hilbert spaces. Given $A\in {B}({H}_1)$, $B\in{B}({H}_2)$, and $C\in{B} ({H}_3)$, write $M_{D,E,F}=\left(\begin{smallmatrix} A D\\
0 B\\
00
\end{smallmatrix}\right)$, where $D\in {B}({H}_2,{H}_1)$, $E\in{B}({H}_3,{H}_1)$, and $F\in{B}({H}_3,{H}_2)$ are unknown operators. This paper gives a complete description of the intersection $\bigcap_{D,E,F} \sigma(M_{D,E,F})$, where $D$, $E$, and $F$ range over the respective sets of bounded linear operators. Further, we show that $\sigma(A)\cup\sigma(B)\cup\sigma(C)=\sigma(M_{D,E,F})\cup W$, where $W$ is the union of certain gaps in $\sigma(M_{D,E,F})$, which are subsets of $(\sigma(A)\cap\sigma(B))\cup(\sigma(B)\cap\sigma(C))\cup(\sigma(A)
\cap\sigma(C))$. Finally, we obtain a necessary and sufficient condition for the relation $\sigma(M_{D,E,F})=\sigma(A)\cup\sigma(B)\cup\sigma(C)$ to hold for any $D$, $E$, and $F$.
Keywords:
spectrum, $3\times 3$ upper triangular operator matrix.
Mots-clés : perturbation
Mots-clés : perturbation
@article{FAA_2017_51_2_a6,
author = {Xiufeng Wu and Junjie Huang and Alatancang Chen},
title = {Spectra of $3\times 3$ upper triangular operator matrices},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {72--82},
publisher = {mathdoc},
volume = {51},
number = {2},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a6/}
}
TY - JOUR AU - Xiufeng Wu AU - Junjie Huang AU - Alatancang Chen TI - Spectra of $3\times 3$ upper triangular operator matrices JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2017 SP - 72 EP - 82 VL - 51 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a6/ LA - ru ID - FAA_2017_51_2_a6 ER -
Xiufeng Wu; Junjie Huang; Alatancang Chen. Spectra of $3\times 3$ upper triangular operator matrices. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 2, pp. 72-82. http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a6/