Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2017_51_2_a4, author = {H. Rezaei}, title = {On operators with orbits dense relative to nontrivial subspaces}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {42--56}, publisher = {mathdoc}, volume = {51}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a4/} }
H. Rezaei. On operators with orbits dense relative to nontrivial subspaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 2, pp. 42-56. http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a4/
[1] S. I. Ansari, “Hypercyclic and cyclic vectors”, J. Funct. Anal., 128:2 (1995), 374–383 | DOI | MR | Zbl
[2] F. Bayart, E. Matheron, Dynamics of Linear Operators, Cambridge University Press, Cambridge, 2009 | MR | Zbl
[3] F. Bayart, K.-G. Grosse-Erdmann, V. Nestoridis, C. Papadimitropoulos, “Abstract theory of universal series and applications”, Proc. Lond. Math. Soc. (3), 96:2 (2008), 417–463 | DOI | MR | Zbl
[4] J. P. Bès, “Invariant manifolds of hypercyclic vectors for the real scalar case”, Proc. Amer. Math. Soc., 127:6 (1999), 1801–1804 | DOI | MR | Zbl
[5] J. Bès, A. Peris, “Hereditarily hypercyclic operators”, J. Funct. Anal., 167:1 (1999), 94–112 | DOI | MR | Zbl
[6] J. Bonet, F. Martínez-Giménez, A. Peris, “Universal and chaotic multipliers on spaces of operators”, J. Math. Anal. Appl., 297:2 (2004), 599–611 | DOI | MR | Zbl
[7] P. S. Bourdon, “Invariant manifolds of hypercyclic vectors”, Proc. Amer. Math. Soc., 118:3 (1993), 845–847 | DOI | MR | Zbl
[8] P. S. Bourdon, “Orbits of hyponormal operators”, Michigan Math. J., 44:2 (1997), 345–353 | DOI | MR | Zbl
[9] P. S. Bourdon, N. S. Feldman, “Somewhere dense orbits are everywhere dense”, Indiana Univ. Math. J., 52:3 (2003), 811–819 | DOI | MR | Zbl
[10] R. M. Gethner, J. H. Shapiro, “Universal vectors for operators on spaces of holomorphic functions”, Proc. Amer. Math. Soc., 100:2 (1987), 281–288 | DOI | MR | Zbl
[11] S. Grivaux, “Hypercyclic operators with an infinite dimensional closed subspace of periodic points”, Rev. Mat. Complut., 16:2 (2003), 383–390 | DOI | MR | Zbl
[12] K. G. Grosse-Erdmann, “Universal families and hypercyclic operators”, Bull. Amer. Math. Soc. (N. S.), 36:3 (1999), 345–381 | DOI | MR | Zbl
[13] K. G. Grosse-Erdmann, A. Peris, Linear Chaos, Universitext, Springer-Verlag, London–Dordrecht–Heidelberg–New York, 2011 | DOI | MR | Zbl
[14] R. R. Jiménez-Munguía, R. A. Martínez-Avendaño, A. Peris, “Some questions about subspace-hypercyclic operators”, J. Math. Anal. Appl., 408:1 (2013), 209–212 | DOI | MR | Zbl
[15] C. Kitai, Invariant closed sets for linear operators,, Ph.D. thesis, Univ. of Toronto, Toronto, 1982 | MR
[16] C. M. Le, “On subspace-hypercyclic operators”, Proc. Amer. Math. Soc., 139:8 (2011), 2847–2852 | DOI | MR | Zbl
[17] B. F. Madore, R. A. Martínez-Avendaño, “Subspace hypercyclicity”, J. Math. Anal. Appl., 373:2 (2011), 502–511 | DOI | MR | Zbl
[18] H. Rezaei, “Notes on subspace-hypercyclic operators”, J. Math. Anal. Appl., 397:1 (2013), 428–433 | DOI | MR | Zbl
[19] S. Rolewicz, “On orbits of elements”, Studia Math., 32 (1969), 17–22 | DOI | MR | Zbl