On operators with orbits dense relative to nontrivial subspaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 2, pp. 42-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we consider bounded linear operators which have orbits dense relative to nontrivial subspaces. We give nontrivial examples of such operators and establish many of their basic properties. An example of an operator which has an orbit dense relative to a certain subspace but is not subspace-hypercyclic for this subspace is given. This, in turn, provides a new answer to a question posed in [18]. Other hypercyclic-like properties of such operators are also considered.
Keywords: hypercyclic operators, invariant subspace.
@article{FAA_2017_51_2_a4,
     author = {H. Rezaei},
     title = {On operators with orbits dense relative to nontrivial subspaces},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {42--56},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a4/}
}
TY  - JOUR
AU  - H. Rezaei
TI  - On operators with orbits dense relative to nontrivial subspaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2017
SP  - 42
EP  - 56
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a4/
LA  - ru
ID  - FAA_2017_51_2_a4
ER  - 
%0 Journal Article
%A H. Rezaei
%T On operators with orbits dense relative to nontrivial subspaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2017
%P 42-56
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a4/
%G ru
%F FAA_2017_51_2_a4
H. Rezaei. On operators with orbits dense relative to nontrivial subspaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 2, pp. 42-56. http://geodesic.mathdoc.fr/item/FAA_2017_51_2_a4/

[1] S. I. Ansari, “Hypercyclic and cyclic vectors”, J. Funct. Anal., 128:2 (1995), 374–383 | DOI | MR | Zbl

[2] F. Bayart, E. Matheron, Dynamics of Linear Operators, Cambridge University Press, Cambridge, 2009 | MR | Zbl

[3] F. Bayart, K.-G. Grosse-Erdmann, V. Nestoridis, C. Papadimitropoulos, “Abstract theory of universal series and applications”, Proc. Lond. Math. Soc. (3), 96:2 (2008), 417–463 | DOI | MR | Zbl

[4] J. P. Bès, “Invariant manifolds of hypercyclic vectors for the real scalar case”, Proc. Amer. Math. Soc., 127:6 (1999), 1801–1804 | DOI | MR | Zbl

[5] J. Bès, A. Peris, “Hereditarily hypercyclic operators”, J. Funct. Anal., 167:1 (1999), 94–112 | DOI | MR | Zbl

[6] J. Bonet, F. Martínez-Giménez, A. Peris, “Universal and chaotic multipliers on spaces of operators”, J. Math. Anal. Appl., 297:2 (2004), 599–611 | DOI | MR | Zbl

[7] P. S. Bourdon, “Invariant manifolds of hypercyclic vectors”, Proc. Amer. Math. Soc., 118:3 (1993), 845–847 | DOI | MR | Zbl

[8] P. S. Bourdon, “Orbits of hyponormal operators”, Michigan Math. J., 44:2 (1997), 345–353 | DOI | MR | Zbl

[9] P. S. Bourdon, N. S. Feldman, “Somewhere dense orbits are everywhere dense”, Indiana Univ. Math. J., 52:3 (2003), 811–819 | DOI | MR | Zbl

[10] R. M. Gethner, J. H. Shapiro, “Universal vectors for operators on spaces of holomorphic functions”, Proc. Amer. Math. Soc., 100:2 (1987), 281–288 | DOI | MR | Zbl

[11] S. Grivaux, “Hypercyclic operators with an infinite dimensional closed subspace of periodic points”, Rev. Mat. Complut., 16:2 (2003), 383–390 | DOI | MR | Zbl

[12] K. G. Grosse-Erdmann, “Universal families and hypercyclic operators”, Bull. Amer. Math. Soc. (N. S.), 36:3 (1999), 345–381 | DOI | MR | Zbl

[13] K. G. Grosse-Erdmann, A. Peris, Linear Chaos, Universitext, Springer-Verlag, London–Dordrecht–Heidelberg–New York, 2011 | DOI | MR | Zbl

[14] R. R. Jiménez-Munguía, R. A. Martínez-Avendaño, A. Peris, “Some questions about subspace-hypercyclic operators”, J. Math. Anal. Appl., 408:1 (2013), 209–212 | DOI | MR | Zbl

[15] C. Kitai, Invariant closed sets for linear operators,, Ph.D. thesis, Univ. of Toronto, Toronto, 1982 | MR

[16] C. M. Le, “On subspace-hypercyclic operators”, Proc. Amer. Math. Soc., 139:8 (2011), 2847–2852 | DOI | MR | Zbl

[17] B. F. Madore, R. A. Martínez-Avendaño, “Subspace hypercyclicity”, J. Math. Anal. Appl., 373:2 (2011), 502–511 | DOI | MR | Zbl

[18] H. Rezaei, “Notes on subspace-hypercyclic operators”, J. Math. Anal. Appl., 397:1 (2013), 428–433 | DOI | MR | Zbl

[19] S. Rolewicz, “On orbits of elements”, Studia Math., 32 (1969), 17–22 | DOI | MR | Zbl