Triangular Reductions of the $2D$ Toda Hierarchy
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 1, pp. 60-81
Voir la notice de l'article provenant de la source Math-Net.Ru
New reductions of the 2D Toda equations associated with lower-triangular difference operators are proposed. Their explicit Hamiltonian description is obtained.
Keywords:
integrable systems, bi-Hamiltonian theory, Baker–Akhiezer function.
@article{FAA_2017_51_1_a4,
author = {A. V. Il'ina and I. M. Krichever},
title = {Triangular {Reductions} of the $2D$ {Toda} {Hierarchy}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {60--81},
publisher = {mathdoc},
volume = {51},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_1_a4/}
}
A. V. Il'ina; I. M. Krichever. Triangular Reductions of the $2D$ Toda Hierarchy. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 1, pp. 60-81. http://geodesic.mathdoc.fr/item/FAA_2017_51_1_a4/