A Criterion of Smoothness at Infinity for an Arithmetic Quotient of the Future Tube
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 1, pp. 40-59

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be an arithmetic group of affine automorphisms of the $n$-dimensional future tube $\mathcal{T}$. It is proved that the quotient space $\mathcal{T}\!/\Gamma$ is smooth at infinity if and only if the group $\Gamma$ is generated by reflections and the fundamental polyhedral cone (“Weyl chamber”) of the group $d\Gamma$ in the future cone is a simplicial cone (which is possible only for $n\le 10$). As a consequence of this result, a smoothness criterion for the Satake–Baily–Borel compactification of an arithmetic quotient of a symmetric domain of type IV is obtained.
Keywords: symmetric domain, future tube, boundary component, arithmetic quotient, reflection group, automorphic form.
@article{FAA_2017_51_1_a3,
     author = {\`E. B. Vinberg and O. V. Schwarzman},
     title = {A {Criterion} of {Smoothness} at {Infinity} for an {Arithmetic} {Quotient} of the {Future} {Tube}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {40--59},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_1_a3/}
}
TY  - JOUR
AU  - È. B. Vinberg
AU  - O. V. Schwarzman
TI  - A Criterion of Smoothness at Infinity for an Arithmetic Quotient of the Future Tube
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2017
SP  - 40
EP  - 59
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2017_51_1_a3/
LA  - ru
ID  - FAA_2017_51_1_a3
ER  - 
%0 Journal Article
%A È. B. Vinberg
%A O. V. Schwarzman
%T A Criterion of Smoothness at Infinity for an Arithmetic Quotient of the Future Tube
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2017
%P 40-59
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2017_51_1_a3/
%G ru
%F FAA_2017_51_1_a3
È. B. Vinberg; O. V. Schwarzman. A Criterion of Smoothness at Infinity for an Arithmetic Quotient of the Future Tube. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 1, pp. 40-59. http://geodesic.mathdoc.fr/item/FAA_2017_51_1_a3/