A Criterion of Smoothness at Infinity for an Arithmetic Quotient of the Future Tube
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 1, pp. 40-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be an arithmetic group of affine automorphisms of the $n$-dimensional future tube $\mathcal{T}$. It is proved that the quotient space $\mathcal{T}\!/\Gamma$ is smooth at infinity if and only if the group $\Gamma$ is generated by reflections and the fundamental polyhedral cone (“Weyl chamber”) of the group $d\Gamma$ in the future cone is a simplicial cone (which is possible only for $n\le 10$). As a consequence of this result, a smoothness criterion for the Satake–Baily–Borel compactification of an arithmetic quotient of a symmetric domain of type IV is obtained.
Keywords: symmetric domain, future tube, boundary component, arithmetic quotient, reflection group, automorphic form.
@article{FAA_2017_51_1_a3,
     author = {\`E. B. Vinberg and O. V. Schwarzman},
     title = {A {Criterion} of {Smoothness} at {Infinity} for an {Arithmetic} {Quotient} of the {Future} {Tube}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {40--59},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_1_a3/}
}
TY  - JOUR
AU  - È. B. Vinberg
AU  - O. V. Schwarzman
TI  - A Criterion of Smoothness at Infinity for an Arithmetic Quotient of the Future Tube
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2017
SP  - 40
EP  - 59
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2017_51_1_a3/
LA  - ru
ID  - FAA_2017_51_1_a3
ER  - 
%0 Journal Article
%A È. B. Vinberg
%A O. V. Schwarzman
%T A Criterion of Smoothness at Infinity for an Arithmetic Quotient of the Future Tube
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2017
%P 40-59
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2017_51_1_a3/
%G ru
%F FAA_2017_51_1_a3
È. B. Vinberg; O. V. Schwarzman. A Criterion of Smoothness at Infinity for an Arithmetic Quotient of the Future Tube. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 1, pp. 40-59. http://geodesic.mathdoc.fr/item/FAA_2017_51_1_a3/

[1] M. A. Armstrong, “The fundamental group of the orbit space of a discontinuous group”, Math. Proc. Camb. Philos. Soc., 64:2 (1968), 299–301 | DOI | MR | Zbl

[2] A. Ash, D. Mumford, M. Rapoport, Y. Tai, Smooth Compactifications of Locally Symmetric Varieties, 2, Cambridge University Press, Cambridge, 2010 | MR | Zbl

[3] W. Baily, “Satake's compactification of $V_n$”, Amer. J. Math., 80 (1958), 348–364 | DOI | MR | Zbl

[4] W. Baily, A. Borel, “Compactification of arithmetic quotients of bounded symmetric domains”, Ann. of Math., 84:3 (1966), 442–528 | DOI | MR | Zbl

[5] J. Bernstein, O. Schwarzman, “Chevalley's theorem for the complex crystallographic groups”, J. Nonlinear Math. Phys., 13:3 (2006), 323–351 | DOI | MR | Zbl

[6] A. Borel, N. Wallach, Continuous Cohomology, Siscrete Subgroups and Representations of Reductive Groups, Annals of Math. Studies, 94, Princeton University Press, Princeton, 1980 | MR

[7] H. Cartan, “Quotient d'un espace analytlque par un groupe d'automorphismes”, Algebraic Geometry and Topology, Symp. in Honor of S. Lefschetz, Princeton University Press, Princeton, 1957, 90–102 | DOI | MR | Zbl

[8] E. Freitag, R. Kiehl, “Algebraische Eigenschaften der localen Ringe in den Spitzen der Hilbertschen Modulgruppen”, Invent. Math., 24:2 (1974), 121–148 | DOI | MR | Zbl

[9] E. Gottschling, “Invarianten endlichen Gruppen und biholomorphe Abbildungen”, Invent. Math., 6:4 (1969), 315–326 | DOI | MR | Zbl

[10] H. Grauert, R. Remmert, “Komplexe Räume”, Math. Ann., 136 (1958), 245–318 | DOI | MR | Zbl

[11] J. Igusa, “On Siegel modular forms of genus two”, Amer. J. Math., 84:1 (1962), 175–200 | DOI | MR

[12] F. Lanner, On complexes with transitive groups of automorphisms, Comm. Sém. Math. Univ. Lund, 11, 1950 | MR | Zbl

[13] E. Looijenga, “Root systems and elliptic curves”, Invent. Math., 38:1 (1976), 17–32 | DOI | MR | Zbl

[14] E. Looijenga, “Invariant theory for generalized root systems”, Invent. Math., 61:1 (1980), 1–32 | DOI | MR | Zbl

[15] G. A. Margulis, “Arithmeticity of the irreducible lattices in the semisimple groups of rank greater than 1”, Invent. Math., 76:1 (1984), 93–120 | DOI | MR | Zbl

[16] O. Shvartsman, “Cartan matrices of hyperbolic type and nonsingular parabolic points of quotient spaces of tube domains”, Selecta Math. Soviet., 4:1 (1985), 55–61 | MR | Zbl

[17] E. B. Vinberg, “Some free algebras of automorphic forms on symmetric domains of type IV”, Transformation Groups, 15:3 (2010), 701–741 | DOI | MR | Zbl

[18] N. Burbaki, Gruppy i algebry Li, Mir, M., 1972 | MR

[19] E. B. Vinberg, “Diskretnye gruppy, porozhdennye otrazheniyami, v prostranstvakh Lobaevskogo”, Matem. sb., 72:3 (1967), 471–488 | Zbl

[20] E. B. Vinberg, “Nekotorye primery kristallograficheskikh grupp v prostranstvakh Lobachevskogo”, Matem. sb., 78:4 (1969), 633–639

[21] E. B. Vinberg, O. V. Shvartsman, “Diskpetnye gpuppy dvizhenii ppostpanstv postoyannoi kpivizny”, Itogi nauki i tekhniki. Sovpemennye ppoblemy matemematiki. Fundamentalnye nappavleniya, 29, VINITI, M., 1988, 147–259

[22] E. B. Vinberg, “Ob algebre modulyarnykh form Zigelya roda $2$”, Trudy MMO, 74:1 (2013), 2–17

[23] I. I. Pyatetskii-Shapiro, Geometriya klassicheskikh oblastei i teoriya avtomorfnykh funktsii, Fizmatgiz, M., 1961 | MR