Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2017_51_1_a1, author = {V. M. Buchstaber and A. V. Mikhailov}, title = {Infinite-Dimensional {Lie} {Algebras} {Determined} by the {Space} of {Symmetric} {Squares} of {Hyperelliptic} {Curves}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {4--27}, publisher = {mathdoc}, volume = {51}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_1_a1/} }
TY - JOUR AU - V. M. Buchstaber AU - A. V. Mikhailov TI - Infinite-Dimensional Lie Algebras Determined by the Space of Symmetric Squares of Hyperelliptic Curves JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2017 SP - 4 EP - 27 VL - 51 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2017_51_1_a1/ LA - ru ID - FAA_2017_51_1_a1 ER -
%0 Journal Article %A V. M. Buchstaber %A A. V. Mikhailov %T Infinite-Dimensional Lie Algebras Determined by the Space of Symmetric Squares of Hyperelliptic Curves %J Funkcionalʹnyj analiz i ego priloženiâ %D 2017 %P 4-27 %V 51 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2017_51_1_a1/ %G ru %F FAA_2017_51_1_a1
V. M. Buchstaber; A. V. Mikhailov. Infinite-Dimensional Lie Algebras Determined by the Space of Symmetric Squares of Hyperelliptic Curves. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 1, pp. 4-27. http://geodesic.mathdoc.fr/item/FAA_2017_51_1_a1/
[1] V. I. Arnold, Osobennosti kaustik i volnovykh frontov, Biblioteka matematika, 1, FAZIS, M., 1996 | MR
[2] V. I. Arnold, “Wave front evolution and equivariant Morse lemma”, Comm. Pure Appl. Math., 29:6 (1976), 557–582 ; 30:6 (1977), 823, correction ; V. I. Arnold, Izbrannoe-60, FAZIS, M., 1997, 289–318 | DOI | MR | Zbl | DOI | MR | Zbl | MR
[3] V. M. Bukhshtaber, “Polinomialnye dinamicheskie sistemy i uravnenie Kortevega–de Friza”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Sbornik statei, v. 2, Tr. MIAN, 294, MAIK, M., 2016, 191–215 | DOI
[4] V. M. Bukhshtaber, D. V. Leikin, “Polinomialnye algebry Li”, Funkts. anal. prilozhen., 36:4 (2002), 18–34 | DOI | MR | Zbl
[5] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Hyperelliptic Kleinian functions and applications”, Solitons, Geometry and Topology: On the Crossroad, Amer. Math. Soc. Trans., Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 1–33 | DOI | MR
[6] B. Enriquez, V. Rubtsov, “Commuting families in skew fields and quantization of Beauville's fibration”, Duke Math. J., 119:2 (2003), 197–219 | DOI | MR | Zbl
[7] Ph. J. Higgins, K. Mackenzie, “Algebraic constructions in the category of the Lie algebroids”, J. Algebra, 129 (1990), 194–230 | DOI | MR | Zbl
[8] V. Kats, Beskonechnomernye algebry Li, Mir, M., 1995 | MR
[9] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1984 | MR
[10] K. Mackenzie, The General Theory of Lie Groupoids and Lie Algebroids, Cambridge University Press, Cambridge, 2005 | MR | Zbl
[11] P. W. Michor, Topics in Differential Geometry, Graduate Studies in Math., 93, Amer. Math. Soc., Providence, RI, 2008 | DOI | MR | Zbl