Homogenization of Hyperbolic Equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 4, pp. 91-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a self-adjoint matrix elliptic operator $A_\varepsilon$, $\varepsilon >0$, on $L_2({\mathbb R}^d;{\mathbb C}^n)$ given by the differential expression $b({\mathbf D})^* g({\mathbf x}/\varepsilon)b({\mathbf D})$. The matrix-valued function $g({\mathbf x})$ is bounded, positive definite, and periodic with respect to some lattice; $b({\mathbf D})$ is an $(m\times n)$-matrix first order differential operator such that $m \ge n$ and the symbol $b(\boldsymbol{\xi})$ has maximal rank. We study the operator cosine $\cos (\tau A^{1/2}_\varepsilon)$, where $\tau \in {\mathbb R}$. It is shown that, as $\varepsilon \to 0$, the operator $\cos (\tau A^{1/2}_\varepsilon)$ converges to $\cos(\tau (A^0)^{1/2})$ in the norm of operators acting from the Sobolev space $H^s({\mathbb R}^d;{\mathbb C}^n)$ (with a suitable $s$) to $L_2({\mathbb R}^d;{\mathbb C}^n)$. Here $A^0$ is the effective operator with constant coefficients. Sharp-order error estimates are obtained. The question about the sharpness of the result with respect to the type of the operator norm is studied. Similar results are obtained for more general operators. The results are applied to study the behavior of the solution of the Cauchy problem for the hyperbolic equation $\partial^2_\tau {\mathbf u}_\varepsilon ({\mathbf x}, \tau) =- A_\varepsilon {\mathbf u}_\varepsilon({\mathbf x}, \tau)$.
Keywords: periodic differential operators, hyperbolic equations, homogenization, operator error estimates.
@article{FAA_2016_50_4_a7,
     author = {M. Dorodnyi and T. A. Suslina},
     title = {Homogenization of {Hyperbolic} {Equations}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {91--96},
     publisher = {mathdoc},
     volume = {50},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a7/}
}
TY  - JOUR
AU  - M. Dorodnyi
AU  - T. A. Suslina
TI  - Homogenization of Hyperbolic Equations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 91
EP  - 96
VL  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a7/
LA  - ru
ID  - FAA_2016_50_4_a7
ER  - 
%0 Journal Article
%A M. Dorodnyi
%A T. A. Suslina
%T Homogenization of Hyperbolic Equations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 91-96
%V 50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a7/
%G ru
%F FAA_2016_50_4_a7
M. Dorodnyi; T. A. Suslina. Homogenization of Hyperbolic Equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 4, pp. 91-96. http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a7/

[1] T. A. Suslina, J. Math. Anal. Appl., 2016 | DOI

[2] T. A. Suslina, Funkts. analiz i ego pril., 50:3 (2016), 90–96 | DOI | MR | Zbl

[3] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 15:5 (2003), 1–108

[4] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 17:6 (2005), 1–104

[5] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 18:6 (2006), 1–130

[6] T. A. Suslina, Funkts. analiz i ego pril., 38:4 (2004), 86–90 | DOI | MR | Zbl

[7] T. A. Suslina, Amer. Math. Soc. Transl. Ser. 2, 220, Amer. Math. Soc., Providence, RI, 2007, 201–233 | DOI | MR | Zbl

[8] V. V. Zhikov, S. E. Pastukhova, Russian J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl

[9] V. V. Zhikov, S. E. Pastukhova, Russian J. Math. Phys., 13:2 (2006), 224–237 | DOI | MR | Zbl

[10] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 20:6 (2008), 30–107

[11] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR