Tangential Polynomials and Matrix KdV Elliptic Solitons
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 4, pp. 76-90
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $(X,q)$ be an elliptic curve marked at the origin. Starting from any cover $\pi\colon\Gamma\to X$ of an elliptic curve $X$ marked at $d$ points $\{\pi_i\}$ of the fiber $\pi^{-1}(q)$ and satisfying a particular criterion, Krichever constructed a family of $d\times d$ matrix KP solitons, that is, matrix solutions, doubly periodic in $x$, of the KP equation. Moreover, if $\Gamma$ has a meromorphic function $f\colon\Gamma\to\mathbb{P}^1$ with a double pole at each $p_i$, then these solutions are doubly periodic solutions of the matrix KdV equation $U_t=\frac14(3UU_x+3U_xU+U_{xxx})$. In this article, we restrict ourselves to the case in which there exists a meromorphic function with a unique double pole at each of the $d$ points $\{p_i\}$; i.e. $\Gamma$ is hyperelliptic and each $p_i$ is a Weierstrass
point of $\Gamma$. More precisely, our purpose is threefold: (1) present simple polynomial equations defining spectral curves of matrix KP elliptic solitons; (2) construct the corresponding polynomials via the vector Baker–Akhiezer function of $X$; (3) find arbitrarily high genus spectral curves of matrix KdV elliptic solitons.
Mots-clés :
KP equation
Keywords: KdV equation, compact Riemann surface, vector Baker–Akhiezer function, ruled surface.
Keywords: KdV equation, compact Riemann surface, vector Baker–Akhiezer function, ruled surface.
@article{FAA_2016_50_4_a6,
author = {A. Treibich},
title = {Tangential {Polynomials} and {Matrix} {KdV} {Elliptic} {Solitons}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {76--90},
publisher = {mathdoc},
volume = {50},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a6/}
}
A. Treibich. Tangential Polynomials and Matrix KdV Elliptic Solitons. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 4, pp. 76-90. http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a6/