Tangential Polynomials and Matrix KdV Elliptic Solitons
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 4, pp. 76-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(X,q)$ be an elliptic curve marked at the origin. Starting from any cover $\pi\colon\Gamma\to X$ of an elliptic curve $X$ marked at $d$ points $\{\pi_i\}$ of the fiber $\pi^{-1}(q)$ and satisfying a particular criterion, Krichever constructed a family of $d\times d$ matrix KP solitons, that is, matrix solutions, doubly periodic in $x$, of the KP equation. Moreover, if $\Gamma$ has a meromorphic function $f\colon\Gamma\to\mathbb{P}^1$ with a double pole at each $p_i$, then these solutions are doubly periodic solutions of the matrix KdV equation $U_t=\frac14(3UU_x+3U_xU+U_{xxx})$. In this article, we restrict ourselves to the case in which there exists a meromorphic function with a unique double pole at each of the $d$ points $\{p_i\}$; i.e. $\Gamma$ is hyperelliptic and each $p_i$ is a Weierstrass point of $\Gamma$. More precisely, our purpose is threefold: (1) present simple polynomial equations defining spectral curves of matrix KP elliptic solitons; (2) construct the corresponding polynomials via the vector Baker–Akhiezer function of $X$; (3) find arbitrarily high genus spectral curves of matrix KdV elliptic solitons.
Mots-clés : KP equation
Keywords: KdV equation, compact Riemann surface, vector Baker–Akhiezer function, ruled surface.
@article{FAA_2016_50_4_a6,
     author = {A. Treibich},
     title = {Tangential {Polynomials} and {Matrix} {KdV} {Elliptic} {Solitons}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {76--90},
     publisher = {mathdoc},
     volume = {50},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a6/}
}
TY  - JOUR
AU  - A. Treibich
TI  - Tangential Polynomials and Matrix KdV Elliptic Solitons
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 76
EP  - 90
VL  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a6/
LA  - ru
ID  - FAA_2016_50_4_a6
ER  - 
%0 Journal Article
%A A. Treibich
%T Tangential Polynomials and Matrix KdV Elliptic Solitons
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 76-90
%V 50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a6/
%G ru
%F FAA_2016_50_4_a6
A. Treibich. Tangential Polynomials and Matrix KdV Elliptic Solitons. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 4, pp. 76-90. http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a6/

[1] A. A. Akhmetshin, Yu. S. Volvovskii, I. M. Krichever, “Ellipticheskie semeistva reshenii uravneniya Kadomtseva–Petviashvili i polevoi analog ellipticheskoi sistemy Kalodzhero–Mozera”, Funkts. analiz i ego pril., 36:4 (2002), 1–17 | DOI | MR | Zbl

[2] I. M. Krichever, O. Babelon, E. Billey, and M. Talon, “Spin generalization of the Calogero–Moser system and the Matrix KP equation”, Topics in Topology and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 170, Amer. Math. Soc., Providence, RI, 1995, 83–119 | DOI | MR | Zbl

[3] E. D. Belokolos, V. Z. Enolskii, “Reduktsiya abelevykh funktsii i algebraicheski integriruemye sistemy. II”, Kompleksnyi analiz i teoriya predstavlenii, Itogi nauki i tekhniki, Sovremennaya matematika i ee prilozheniya, 75, VINITI, M., 2000

[4] I. M. Krichever, “Integrirovanie nelineinykh uravnenii metodami algebraicheskoi geometrii”, Funkts. analiz i ego pril., 11:1 (1977), 15–31 | MR | Zbl

[5] I. M. Krichever, “Ellipticheskie resheniya uravneniya Kadomtseva–Petviashvili i integriruemye sistemy chastits”, Funkts. analiz i ego pril., 14:4 (1980), 45–54 | MR | Zbl

[6] A. O. Smirnov, Ellipticheskie solitony integriruemykh nelineinykh uravnenii, dissertatsiya, S.-P., 2000

[7] A. Treibich, “Tangential polynomials and elliptic solitons”, Duke Math. J., 59:3 (1989), 611–627 | DOI | MR | Zbl

[8] A. Treibich, “Matrix elliptic solitons”, Duke Math. J., 90:3 (1997), 523–547 | DOI | MR | Zbl

[9] A. Treibich and J. L. Verdier, with an appendix by J. ØE sterlé, “Solitons Elliptiques”, The Grothendieck Festschrift, III, Progr. in Math., v. 88, Birkhaüser, Boston, 1990, 437–480 | DOI | MR | Zbl

[10] A. Treibich and J. L. Verdier, “Variétés de Kritchever des solitons elliptiques”, Proc. of the Indo-French Conference on Geometry (Bombay, 1989), Hindustan book Agency, Delhi, 187–232 | MR | Zbl