Functional Equations and Weierstrass Sigma-Functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 4, pp. 43-54

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if an entire function $f\colon\mathbb{C}\to\mathbb{C}$ satisfies an equation of the form $f(x+y) f(x-y) = \alpha_1(x)\beta_1(y)+ \alpha_2(x)\beta_2(y) + \alpha_3(x)\beta_3(y)$, $x,y\in \mathbb{C}$, for some $\alpha_j,\beta_j\colon\mathbb{C}\to\mathbb{C}$ and there exist no $\tilde \alpha_j$ and $\tilde\beta_j$ for which $f(x+y) f(x-y) = \tilde\alpha_1(x)\tilde\beta_1(y)+ \tilde\alpha_2(x)\tilde\beta_2(y)$, then $f(z) = \exp(Az^2+ Bz + C) \cdot \sigma_\Gamma (z-z_1)\cdot \sigma_\Gamma (z-z_2)$, where $\Gamma$ is a lattice in $\mathbb{C}$; $\sigma_\Gamma$ is the Weierstrass sigma-function associated with $\Gamma$; $A,B,C,z_1,z_2\in\mathbb{C}$; and $z_1-z_2\notin (\frac{1}{2}\Gamma)\setminus \Gamma$.
Keywords: functional equation, Weierstrass sigma-function, elliptic function, addition theorem, trilinear functional equation.
@article{FAA_2016_50_4_a4,
     author = {A. A. Illarionov},
     title = {Functional {Equations} and {Weierstrass} {Sigma-Functions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {43--54},
     publisher = {mathdoc},
     volume = {50},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a4/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - Functional Equations and Weierstrass Sigma-Functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 43
EP  - 54
VL  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a4/
LA  - ru
ID  - FAA_2016_50_4_a4
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T Functional Equations and Weierstrass Sigma-Functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 43-54
%V 50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a4/
%G ru
%F FAA_2016_50_4_a4
A. A. Illarionov. Functional Equations and Weierstrass Sigma-Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 4, pp. 43-54. http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a4/