Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2016_50_4_a4, author = {A. A. Illarionov}, title = {Functional {Equations} and {Weierstrass} {Sigma-Functions}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {43--54}, publisher = {mathdoc}, volume = {50}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a4/} }
A. A. Illarionov. Functional Equations and Weierstrass Sigma-Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 4, pp. 43-54. http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a4/
[1] V. M. Bukhshtaber, D. V. Leikin, “Trilineinye funktsionalnye uravneniya”, UMN, 60:2 (2005), 151–152 | DOI | MR | Zbl
[2] V. M. Bukhshtaber, D. V. Leikin, “Zakony slozheniya na yakobianakh ploskikh algebraicheskikh krivykh”, Trudy MIAN, 251, 2005, 54–126 | Zbl
[3] V. M. Bukhshtaber, I. M. Krichever, “Integriruemye uravneniya, teoremy slozheniya i problema Rimana–Shottki”, UMN, 61:1 (2006), 25–84 | DOI | MR | Zbl
[4] V. A. Bykovskii, “Giperkvazimnogochleny i ikh prilozheniya”, Funkts. analiz i ego pril., 50:3 (2016), 34–46 | DOI | MR | Zbl
[5] S. Janson, J. Peetre, R. Wallsten, “A new look on Hankel forms over Fock space”, Studia Math., 95:1 (1989), 33–41 | DOI | MR | Zbl
[6] R. Rochberg, L. Rubel, “A Functional Equation”, Indiana Univ. Math. J., 41:2 (1992), 363–376 | DOI | MR | Zbl
[7] M. Bonk, “The addition formula for theta function”, Aequationes Math, 53:1–2 (1997), 54–72 | DOI | MR | Zbl
[8] M. Bonk, “The addition theorem of Weierstrass's sigma function”, Math. Ann., 298:1 (1994), 591–610 | DOI | MR | Zbl
[9] M. Bonk, “The characterization of theta functions by functional equations”, Abh. Math. Sem. Univ. Hamburg, 65 (1995), 29–55 | DOI | MR | Zbl
[10] A. Jarai, W. Sander, “On the characterization of Weierstrass's sigma function”, Functional Equations—Results and Advances, Adv. Math., v. 3, Kluwer Acad. Publ., Dordrecht, 2002, 29–79 | DOI | MR | Zbl
[11] C. M. Cosgrove, “Higher-order Painleve equations in the polynomial class I. Bureau Symbol P2”, Stud. Appl. Math., 104:1 (2000), 1–65 | DOI | MR | Zbl
[12] S. Stoilov, Teoriya funktsii kompleksnogo peremennogo, v. 1, IL, M., 1962
[13] G. Peano, “Sur le déterminant wronskien”, Mathesis IX, 1889, 110–112 | Zbl