Functional Equations and Weierstrass Sigma-Functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 4, pp. 43-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if an entire function $f\colon\mathbb{C}\to\mathbb{C}$ satisfies an equation of the form $f(x+y) f(x-y) = \alpha_1(x)\beta_1(y)+ \alpha_2(x)\beta_2(y) + \alpha_3(x)\beta_3(y)$, $x,y\in \mathbb{C}$, for some $\alpha_j,\beta_j\colon\mathbb{C}\to\mathbb{C}$ and there exist no $\tilde \alpha_j$ and $\tilde\beta_j$ for which $f(x+y) f(x-y) = \tilde\alpha_1(x)\tilde\beta_1(y)+ \tilde\alpha_2(x)\tilde\beta_2(y)$, then $f(z) = \exp(Az^2+ Bz + C) \cdot \sigma_\Gamma (z-z_1)\cdot \sigma_\Gamma (z-z_2)$, where $\Gamma$ is a lattice in $\mathbb{C}$; $\sigma_\Gamma$ is the Weierstrass sigma-function associated with $\Gamma$; $A,B,C,z_1,z_2\in\mathbb{C}$; and $z_1-z_2\notin (\frac{1}{2}\Gamma)\setminus \Gamma$.
Keywords: functional equation, Weierstrass sigma-function, elliptic function, addition theorem, trilinear functional equation.
@article{FAA_2016_50_4_a4,
     author = {A. A. Illarionov},
     title = {Functional {Equations} and {Weierstrass} {Sigma-Functions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {43--54},
     publisher = {mathdoc},
     volume = {50},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a4/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - Functional Equations and Weierstrass Sigma-Functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 43
EP  - 54
VL  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a4/
LA  - ru
ID  - FAA_2016_50_4_a4
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T Functional Equations and Weierstrass Sigma-Functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 43-54
%V 50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a4/
%G ru
%F FAA_2016_50_4_a4
A. A. Illarionov. Functional Equations and Weierstrass Sigma-Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 4, pp. 43-54. http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a4/

[1] V. M. Bukhshtaber, D. V. Leikin, “Trilineinye funktsionalnye uravneniya”, UMN, 60:2 (2005), 151–152 | DOI | MR | Zbl

[2] V. M. Bukhshtaber, D. V. Leikin, “Zakony slozheniya na yakobianakh ploskikh algebraicheskikh krivykh”, Trudy MIAN, 251, 2005, 54–126 | Zbl

[3] V. M. Bukhshtaber, I. M. Krichever, “Integriruemye uravneniya, teoremy slozheniya i problema Rimana–Shottki”, UMN, 61:1 (2006), 25–84 | DOI | MR | Zbl

[4] V. A. Bykovskii, “Giperkvazimnogochleny i ikh prilozheniya”, Funkts. analiz i ego pril., 50:3 (2016), 34–46 | DOI | MR | Zbl

[5] S. Janson, J. Peetre, R. Wallsten, “A new look on Hankel forms over Fock space”, Studia Math., 95:1 (1989), 33–41 | DOI | MR | Zbl

[6] R. Rochberg, L. Rubel, “A Functional Equation”, Indiana Univ. Math. J., 41:2 (1992), 363–376 | DOI | MR | Zbl

[7] M. Bonk, “The addition formula for theta function”, Aequationes Math, 53:1–2 (1997), 54–72 | DOI | MR | Zbl

[8] M. Bonk, “The addition theorem of Weierstrass's sigma function”, Math. Ann., 298:1 (1994), 591–610 | DOI | MR | Zbl

[9] M. Bonk, “The characterization of theta functions by functional equations”, Abh. Math. Sem. Univ. Hamburg, 65 (1995), 29–55 | DOI | MR | Zbl

[10] A. Jarai, W. Sander, “On the characterization of Weierstrass's sigma function”, Functional Equations—Results and Advances, Adv. Math., v. 3, Kluwer Acad. Publ., Dordrecht, 2002, 29–79 | DOI | MR | Zbl

[11] C. M. Cosgrove, “Higher-order Painleve equations in the polynomial class I. Bureau Symbol P2”, Stud. Appl. Math., 104:1 (2000), 1–65 | DOI | MR | Zbl

[12] S. Stoilov, Teoriya funktsii kompleksnogo peremennogo, v. 1, IL, M., 1962

[13] G. Peano, “Sur le déterminant wronskien”, Mathesis IX, 1889, 110–112 | Zbl