On a Classifying Property of Regular Representations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 4, pp. 2-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that, for each connected compact Lie group $G$, the Hilbert $G$-space $L_2(G)$ and the Banach $G$-space $C(G;\mathbb{C})$ classify the $G$-spaces.
Keywords: classifying $G$-spaces, isovariant absolute extensor, regular representation space.
@article{FAA_2016_50_4_a1,
     author = {S. M. Ageev},
     title = {On a {Classifying} {Property} of {Regular} {Representations}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {2--12},
     publisher = {mathdoc},
     volume = {50},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a1/}
}
TY  - JOUR
AU  - S. M. Ageev
TI  - On a Classifying Property of Regular Representations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 2
EP  - 12
VL  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a1/
LA  - ru
ID  - FAA_2016_50_4_a1
ER  - 
%0 Journal Article
%A S. M. Ageev
%T On a Classifying Property of Regular Representations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 2-12
%V 50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a1/
%G ru
%F FAA_2016_50_4_a1
S. M. Ageev. On a Classifying Property of Regular Representations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 4, pp. 2-12. http://geodesic.mathdoc.fr/item/FAA_2016_50_4_a1/

[7] R. Palais, “The classification of $G$-spaces”, Mem. Amer. Math. Soc., 36 (1960) | MR | Zbl

[8] H. Torunczyk, J. E. West, “The fine structure of $\exp(S^1)/S^1$; a $Q$-manifold hyperspace localization of the integers”, Proceedings of the International Conference on Geometric Topology (Warsaw, 1978), PWN, Warsaw, 1980, 439–449 | MR

[9] S. M. Ageev, “Izovariantnye ekstenzory i kharakterizatsiya ekvivariantnykh gomotopicheskikh ekvivalentnostei”, Izv. RAN, ser. matem., 76:5 (2012), 3–28 | DOI | MR | Zbl

[10] S. M. Ageev, “Universalnye $G$-prostranstva Pale i izovariantnye absolyutnye ekstenzory”, Matem. sb., 203:6 (2012), 3–34 | DOI | MR | Zbl

[11] K. Borsuk, Teoriya retraktov, Mir, M., 1971

[12] S.-T. Hu, Theory of Retracts, Wayne State University Press, Detroit, 1965 | MR | Zbl

[13] S. M. Ageev, “The exponent of compact Lie group as an universal space in the sense of R. Palais”, predstavlena v Fund. Math. (to appear)

[14] G. Bredon, Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | MR

[15] H. Abels, “A universal proper $G$-space”, Math. Z., 159:2 (1978), 143–158 | DOI | MR | Zbl

[16] T. Matumoto, “Equivariant $K$-theory and Fredholm operators”, J. Fac. Sci. Univ. Tokyo Sect. I A Math., 18 (1971), 109–125 | MR | Zbl

[17] S. Segal, “Equivariant contractibility of the general linear group of Hilbert space”, Bull. London Math. Soc., 1 (1969), 329–331 | DOI | MR | Zbl

[18] S. M. Ageev, “Eksponenta $G$-prostranstva i izovariantnye ekstenzory”, Matem. sb., 207:2 (2016), 3–44 | DOI | MR | Zbl

[19] A. Barut, R. Ronchka, Teoriya predstavlenii grupp i ee prilozheniya, v. 1, Mir, M., 1980 | MR

[20] U I Syan, Kogomologicheskaya teoriya topologicheskikh grupp preobrazovanii, Mir, M., 1979