Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2016_50_3_a8, author = {G. I. Olshanski}, title = {Diffusion processes on the {Thoma} cone}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {85--90}, publisher = {mathdoc}, volume = {50}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a8/} }
G. I. Olshanski. Diffusion processes on the Thoma cone. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 3, pp. 85-90. http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a8/
[1] D. Bakry, I. Gentil, M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, Grundlehren der mathematischen Wissenschaften, 48, Springer-Verlag, 2014 | DOI | MR | Zbl
[2] A. Borodin, G. Olshanski, Probab. Theory Related Fields, 144:1 (2009), 281–318 ; arXiv: 0706.1034 | DOI | MR | Zbl
[3] A. Borodin, G. Olshanski, Mosc. Math. J., 13:2 (2013), 193–232 ; arXiv: 1110.4458 | DOI | MR | Zbl
[4] A. Borodin, G. Olshanski, Electron. J. Probab., 18:75 (2013), 1–43 | MR
[5] P. Desrosiers, M. Hallnäs, SIGMA, 8 (2012), 049 | MR | Zbl
[6] S. N. Ethier, T. G. Kurtz, Markov Processes. Characterization and convergence, John Wiley Sons, New York, 2005 | MR | Zbl
[7] T. M. Liggett, Continuous Time Markov processes: An Introduction, Graduate Studies in Math., 113, Amer. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl
[8] G. Olshanski, Zap. nauchn. sem. POMI, 378, 2010, 81–110 ; arXiv: 1009.2037 | MR
[9] G. Olshanski, Int. Math. Res. Notices, 2012:16 (2012), 3615–3679 ; arXiv: 1103.5848 | DOI | MR | Zbl
[10] L. Petrov, J. Algebraic Combin., 38:3 (2013), 663–720 ; arXiv: 1111.3399 | DOI | MR | Zbl