Diffusion processes on the Thoma cone
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 3, pp. 85-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Thoma cone is a certain infinite-dimensional space that arises in the representation theory of the infinite symmetric group. The present note is a continuation of a paper by A. M. Borodin and the author (Electr. J. Probab. 18 (2013), no. 75), where a 2-parameter family of continuous-time Markov processes on the Thoma cone was constructed. The purpose of the note is to show that these processes are diffusions.
Keywords: infinite symmetric group, Thoma simplex, Thoma cone, symmetric functions
Mots-clés : diffusion processes.
@article{FAA_2016_50_3_a8,
     author = {G. I. Olshanski},
     title = {Diffusion processes on the {Thoma} cone},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {85--90},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a8/}
}
TY  - JOUR
AU  - G. I. Olshanski
TI  - Diffusion processes on the Thoma cone
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 85
EP  - 90
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a8/
LA  - ru
ID  - FAA_2016_50_3_a8
ER  - 
%0 Journal Article
%A G. I. Olshanski
%T Diffusion processes on the Thoma cone
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 85-90
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a8/
%G ru
%F FAA_2016_50_3_a8
G. I. Olshanski. Diffusion processes on the Thoma cone. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 3, pp. 85-90. http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a8/

[1] D. Bakry, I. Gentil, M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, Grundlehren der mathematischen Wissenschaften, 48, Springer-Verlag, 2014 | DOI | MR | Zbl

[2] A. Borodin, G. Olshanski, Probab. Theory Related Fields, 144:1 (2009), 281–318 ; arXiv: 0706.1034 | DOI | MR | Zbl

[3] A. Borodin, G. Olshanski, Mosc. Math. J., 13:2 (2013), 193–232 ; arXiv: 1110.4458 | DOI | MR | Zbl

[4] A. Borodin, G. Olshanski, Electron. J. Probab., 18:75 (2013), 1–43 | MR

[5] P. Desrosiers, M. Hallnäs, SIGMA, 8 (2012), 049 | MR | Zbl

[6] S. N. Ethier, T. G. Kurtz, Markov Processes. Characterization and convergence, John Wiley Sons, New York, 2005 | MR | Zbl

[7] T. M. Liggett, Continuous Time Markov processes: An Introduction, Graduate Studies in Math., 113, Amer. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl

[8] G. Olshanski, Zap. nauchn. sem. POMI, 378, 2010, 81–110 ; arXiv: 1009.2037 | MR

[9] G. Olshanski, Int. Math. Res. Notices, 2012:16 (2012), 3615–3679 ; arXiv: 1103.5848 | DOI | MR | Zbl

[10] L. Petrov, J. Algebraic Combin., 38:3 (2013), 663–720 ; arXiv: 1111.3399 | DOI | MR | Zbl