Projections of orbital measures for classical Lie groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 3, pp. 76-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we compute the radial parts of the projections of orbital measures for the compact Lie groups of B, C, and D type, extending previous results obtained for the case of the unitary group by Olshanski and Faraut. Applying the method of Faraut, we show that the radial part of the projection of an orbital measure is expressed in terms of a B-spline with knots located symmetrically with respect to zero.
Keywords: orbital measures, B-splines, divided differences, Harish-Chandra–Itzykson–Zuber integral.
@article{FAA_2016_50_3_a6,
     author = {D. Zubov},
     title = {Projections of orbital measures for classical {Lie} groups},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {76--81},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a6/}
}
TY  - JOUR
AU  - D. Zubov
TI  - Projections of orbital measures for classical Lie groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 76
EP  - 81
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a6/
LA  - ru
ID  - FAA_2016_50_3_a6
ER  - 
%0 Journal Article
%A D. Zubov
%T Projections of orbital measures for classical Lie groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 76-81
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a6/
%G ru
%F FAA_2016_50_3_a6
D. Zubov. Projections of orbital measures for classical Lie groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 3, pp. 76-81. http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a6/

[1] H. B. Curry, I. J. Schoenberg, J. Analyse Math, 17 (1966), 71–107 | DOI | MR | Zbl

[2] J. Faraut, Adv. Pure Appl. Math., 6:4 (2015), 261–283 | DOI | MR | Zbl

[3] Harish-Chandra, Amer. J. Math., 79:1 (1957), 87–120 | DOI | MR | Zbl

[4] G. Olshanski, J. Lie Theory, 23:4 (2013), 1011–1022 | MR | Zbl

[5] G. M. Phillips, Interpolation and approximation by polynomials, CMS Books in Math, 14, Springer-Verlag, New York, 2003 | DOI | MR | Zbl