Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2016_50_3_a3, author = {V. V. Zhikov and S. E. Pastukhova}, title = {On the convergence of bloch eigenfunctions in homogenization problems}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {47--65}, publisher = {mathdoc}, volume = {50}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a3/} }
TY - JOUR AU - V. V. Zhikov AU - S. E. Pastukhova TI - On the convergence of bloch eigenfunctions in homogenization problems JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2016 SP - 47 EP - 65 VL - 50 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a3/ LA - ru ID - FAA_2016_50_3_a3 ER -
V. V. Zhikov; S. E. Pastukhova. On the convergence of bloch eigenfunctions in homogenization problems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 3, pp. 47-65. http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a3/
[1] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Mir, M., 1982 | MR
[2] P. Kuchment, Floquet Theory for Partial Differential Equations, Birkhäuser, Basel, 1993 | MR | Zbl
[3] V. V. Zhikov, S. E. Pastukhova, “Bloch principle for elliptic differential operators with periodic coefficients”, Russian J. Math. Phys., 23:2 (2016), 1–21 | DOI | MR
[4] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR
[5] M. Sh. Birman, T. A. Suslina, “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR
[6] V. V. Zhikov, “Ob operatornykh otsenkakh v teorii usredneniya”, Dokl. RAN, 403:3 (2005), 305–308 | MR | Zbl
[7] V. V. Zhikov, “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Matem. sb., 191:7 (2000), 31–72 | DOI | MR | Zbl
[8] V. V. Zhikov, “O dvukhmasshtabnoi skhodimosti”, Trudy sem. im. I. G. Petrovskogo, 23, 2003, 149–186
[9] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623 | DOI | MR | Zbl
[10] G. Allaire, “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23:6 (1992), 1482–1518 | DOI | MR | Zbl
[11] V. V. Zhikov, “O lakunakh v spektre divergentnykh ellipticheskikh operatorov s periodicheskimi koeffitsientami”, Algebra i analiz, 16:5 (2004), 34–58 | MR