Hyperquasipolynomials and their applications
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 3, pp. 34-46
Voir la notice de l'article provenant de la source Math-Net.Ru
For a given nonzero entire function $g\colon\mathbb{C}\to\mathbb{C}$, we study the linear space $\mathcal{F}(g)$ of all entire functions $f$ such that
$$
f(z+w)g(z-w)=\varphi_1(z)\psi_1(w)+\dots+\varphi_n(z)\psi_n(w),
$$
where $\varphi_1, \psi_1, \dots,\varphi_n,\psi_n\colon\mathbb{C}\to\mathbb{C}$. In the case of $g\equiv1$,
the expansion characterizes quasipolynomials, that is, linear combinations of products of polynomials by exponential
functions. (This is a theorem due to Levi-Civita.) As an application, all solutions of a functional equation in the
theory of trilinear functional equations are obtained.
Mots-clés :
quasipolynomial
Keywords: Weierstrass sigma function, trilinear functional equation.
Keywords: Weierstrass sigma function, trilinear functional equation.
@article{FAA_2016_50_3_a2,
author = {V. A. Bykovskii},
title = {Hyperquasipolynomials and their applications},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {34--46},
publisher = {mathdoc},
volume = {50},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a2/}
}
V. A. Bykovskii. Hyperquasipolynomials and their applications. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 3, pp. 34-46. http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a2/