Hyperquasipolynomials and their applications
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 3, pp. 34-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a given nonzero entire function $g\colon\mathbb{C}\to\mathbb{C}$, we study the linear space $\mathcal{F}(g)$ of all entire functions $f$ such that $$ f(z+w)g(z-w)=\varphi_1(z)\psi_1(w)+\dots+\varphi_n(z)\psi_n(w), $$ where $\varphi_1, \psi_1, \dots,\varphi_n,\psi_n\colon\mathbb{C}\to\mathbb{C}$. In the case of $g\equiv1$, the expansion characterizes quasipolynomials, that is, linear combinations of products of polynomials by exponential functions. (This is a theorem due to Levi-Civita.) As an application, all solutions of a functional equation in the theory of trilinear functional equations are obtained.
Mots-clés : quasipolynomial
Keywords: Weierstrass sigma function, trilinear functional equation.
@article{FAA_2016_50_3_a2,
     author = {V. A. Bykovskii},
     title = {Hyperquasipolynomials and their applications},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {34--46},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a2/}
}
TY  - JOUR
AU  - V. A. Bykovskii
TI  - Hyperquasipolynomials and their applications
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 34
EP  - 46
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a2/
LA  - ru
ID  - FAA_2016_50_3_a2
ER  - 
%0 Journal Article
%A V. A. Bykovskii
%T Hyperquasipolynomials and their applications
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 34-46
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a2/
%G ru
%F FAA_2016_50_3_a2
V. A. Bykovskii. Hyperquasipolynomials and their applications. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 3, pp. 34-46. http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a2/

[1] T. Levi-Civita, “Sulle funzioni che ammettono una formula d'addizione del tipo $f(x+\nobreak y)=\sum_{i=1}^nX_i(x)Y_i(y)$”, Rom. Acc. L. Rend., 22:2 (1913), 181–183 | Zbl

[2] V. M. Bukhshtaber, D. V. Leikin, “Trilineinye funktsionalnye uravneniya”, UMN, 60:2 (2005), 151–152 | DOI | MR | Zbl

[3] V. M. Bukhshtaber, D. V. Leikin, “Zakony slozheniya na yakobianakh ploskikh algebraicheskikh krivykh”, Trudy MIAN, 251, 2005, 54–126 | MR | Zbl

[4] V. M. Bukhshtaber, I. M. Krichever, “Integriruemye uravneniya, teoremy slozheniya i problema Rimana–Shottki”, UMN, 61:1(367) (2006), 25–84 | DOI | MR | Zbl

[5] M. Bonk, “The addition theorem of Weierstrass's sigma function”, Math. Ann., 298:4 (1994), 591–610 | DOI | MR | Zbl

[6] K. Weierstrass, “Zur Theorie der Jacobi'schen Functionen von mehreren Veränderlichen”, Math. Werke, 3, Berlin, 1903, 155–159 | Zbl

[7] A. Hurwitz, “Über die Weierstass'sche $\sigma$-Function”, Festschrift für H. A. Schwartz, Berlin, 1914, 133–141 ; Math. Werke, 1, Birkhäuser, Basel, 1932, 772–730 | Zbl

[8] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, v. II, Fizmatlit, M., 1963

[9] R. Rochberg, L. A. Rubel, “A functional equation”, Indiana Univ. Math. J., 41:2 (1992), 363–376 | DOI | MR | Zbl