Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2016_50_3_a2, author = {V. A. Bykovskii}, title = {Hyperquasipolynomials and their applications}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {34--46}, publisher = {mathdoc}, volume = {50}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a2/} }
V. A. Bykovskii. Hyperquasipolynomials and their applications. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 3, pp. 34-46. http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a2/
[1] T. Levi-Civita, “Sulle funzioni che ammettono una formula d'addizione del tipo $f(x+\nobreak y)=\sum_{i=1}^nX_i(x)Y_i(y)$”, Rom. Acc. L. Rend., 22:2 (1913), 181–183 | Zbl
[2] V. M. Bukhshtaber, D. V. Leikin, “Trilineinye funktsionalnye uravneniya”, UMN, 60:2 (2005), 151–152 | DOI | MR | Zbl
[3] V. M. Bukhshtaber, D. V. Leikin, “Zakony slozheniya na yakobianakh ploskikh algebraicheskikh krivykh”, Trudy MIAN, 251, 2005, 54–126 | MR | Zbl
[4] V. M. Bukhshtaber, I. M. Krichever, “Integriruemye uravneniya, teoremy slozheniya i problema Rimana–Shottki”, UMN, 61:1(367) (2006), 25–84 | DOI | MR | Zbl
[5] M. Bonk, “The addition theorem of Weierstrass's sigma function”, Math. Ann., 298:4 (1994), 591–610 | DOI | MR | Zbl
[6] K. Weierstrass, “Zur Theorie der Jacobi'schen Functionen von mehreren Veränderlichen”, Math. Werke, 3, Berlin, 1903, 155–159 | Zbl
[7] A. Hurwitz, “Über die Weierstass'sche $\sigma$-Function”, Festschrift für H. A. Schwartz, Berlin, 1914, 133–141 ; Math. Werke, 1, Birkhäuser, Basel, 1932, 772–730 | Zbl
[8] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, v. II, Fizmatlit, M., 1963
[9] R. Rochberg, L. A. Rubel, “A functional equation”, Indiana Univ. Math. J., 41:2 (1992), 363–376 | DOI | MR | Zbl