Krein's trace formula for unitary operators and operator Lipschitz functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 3, pp. 1-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of this paper is a description of the space of functions on the unit circle, for which Krein's trace formula holds for arbitrary pairs of unitary operators with trace class difference. This space coincides with the space of operator Lipschitz functions on the unit circle.
Keywords: Krein's trace formula, spectral shift function, operator Lipschitz functions, double operator integrals
Mots-clés : Schur multipliers.
@article{FAA_2016_50_3_a0,
     author = {A. B. Aleksandrov and V. V. Peller},
     title = {Krein's trace formula for unitary operators and operator {Lipschitz} functions},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--11},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
AU  - V. V. Peller
TI  - Krein's trace formula for unitary operators and operator Lipschitz functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2016
SP  - 1
EP  - 11
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a0/
LA  - ru
ID  - FAA_2016_50_3_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%A V. V. Peller
%T Krein's trace formula for unitary operators and operator Lipschitz functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2016
%P 1-11
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a0/
%G ru
%F FAA_2016_50_3_a0
A. B. Aleksandrov; V. V. Peller. Krein's trace formula for unitary operators and operator Lipschitz functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 50 (2016) no. 3, pp. 1-11. http://geodesic.mathdoc.fr/item/FAA_2016_50_3_a0/

[1] A. B. Aleksandrov, V. V. Peller, “Operatorno lipshitsevy funktsii”, UMN, 71:4(430) (2016), 3–106 | DOI | MR | Zbl

[2] M. Sh. Birman, M. Z. Solomyak, “Dvoinye operatornye integraly Stiltesa”, Problemy matematicheskoi fiziki, v. 1, Spektralnaya teoriya i volnovye protsescy, Izd-vo LGU, Leningrad, 1966, 33–67 | MR

[3] M. Sh. Birman, M. Z. Solomyak, “Dvoinye operatornye integraly Stiltesa. II”, Problemy matematicheskoi fiziki, v. 2, Spektralnaya teoriya, problemy difraktsii, Izd-vo LGU, Leningrad, 1967, 26–60 | MR

[4] M. Sh. Birman, M. Z. Solomyak, “Zamechaniya o funktsii spektralnogo sdviga”, Zap. nauchn. sem. LOMI, 27, 1972, 33–46 | MR | Zbl

[5] M. Sh. Birman, M. Z. Solomyak, “Dvoinye operatornye integraly Stiltesa. III. Predelnyi perekhod pod znakom integrala”, Problemy matematicheskoi fiziki, v. 6, Teoriya funktsii. Spektralnaya teoriya. Rasprostranenie voln, Izd-vo LGU, Leningrad, 1973, 27–53 | MR

[6] Yu. L. Daletskii, S. G. Krein, “Integrirovanie i differentsirovanie ermitovykh operatorov i prilozhenie k teorii vozmuschenii”, Trudy seminara po funkts. analizu Voronezhskogo universiteta, 1956, no. 1, 81–105 | MR | Zbl

[7] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR

[8] M. G. Krein, “O formule sledov v teorii vozmuschenii”, Matem. sb., 33:3 (1953), 597–626 | MR | Zbl

[9] M. G. Krein, “Ob opredelitelyakh vozmuscheniya i formule sledov dlya unitarnykh i samosopryazhennykh operatorov”, Dokl. AN SSSR, 144:2 (1962), 268–271 | MR | Zbl

[10] M. G. Krein, “O nekotorykh novykh issledovaniyakh po teorii vozmuschenii samosopryazhennykh operatorov”, Pervaya letnyaya matematicheskaya shkola, Naukova dumka, Kiev, 1964, 103–187 | MR

[11] I. M. Lifshits, “Ob odnoi zadache teorii vozmuschenii, svyazannoi s kvantovoi statistikoi”, UMN, 7:1(47) (1952), 171–180 | MR | Zbl

[12] V. V. Peller, “Operatory Gankelya klassa $\mathfrak S_p$ i ikh prilozheniya (ratsionalnaya approksimatsiya, gaussovskie protsessy, problema mazhoratsii operatorov)”, Matem. sb., 113(155):4(12) (1980), 538–581 | MR | Zbl

[13] V. V. Peller, “Operatory Gankelya v teorii vozmuschenii unitarnykh i samosopryazhennykh operatorov”, Funkts. analiz i ego prilozh., 19:2 (1985), 37–51 | MR | Zbl

[14] V. V. Peller, Operatory Gankelya i ikh prilozheniya, NITs “Regulyarnaya i khaoticheskaya dinamika”, Institut kompyuternykh issledovanii, M., Izhevsk, 2005 | MR

[15] Yu. B. Farforovskaya, “O svyazi metriki Kantorovicha–Rubinshteina dlya spektralnykh razlozhenii samosopryazhennykh operatorov s funktsiyami ot operatorov”, Vestnik LGU, 19 (1968), 94–97 | MR | Zbl

[16] Yu. B. Farforovskaya, “Primer lipshitsevoi funktsii ot samosopryazhennogo operatora, dayuschei neyadernye prirascheniya pri yadernom vozmuschenii”, Zap. nauchn. sem. LOMI, 30, 1972, 146–153 | MR | Zbl

[17] A. B. Aleksandrov, V. V. Peller, “Estimates of operator moduli of continuity”, J. Funct. Anal., 261:10 (2011), 2741–2796 | DOI | MR | Zbl

[18] B. E. Johnson, J. P. Williams, “The range of a normal derivation”, Pacific J. Math., 58:1 (1975), 105–122 | DOI | MR | Zbl

[19] T. Kato, “Continuity of the map $S\mapsto|S|$ for linear operators”, Proc. Japan Acad., 49 (1973), 157–160 | DOI | MR | Zbl

[20] E. Kissin, D. Potapov, V. S. Shulman, F. Sukochev, “Operator smoothness in Schatten norms for functions of several variables: Lipschitz conditions, differentiability and unbounded derivations”, Proc. London Math. Soc. (3), 105:4 (2012), 661–702 | DOI | MR | Zbl

[21] E. Kissin, V. S. Shulman, “On a problem of J. P. Williams”, Proc. Amer. Math. Soc., 130:12 (2002), 3605–3608 | DOI | MR | Zbl

[22] A. McIntosh, “Counterexample to a question on commutators”, Proc. Amer. Math. Soc., 29 (1971), 337–340 | DOI | MR | Zbl

[23] J. Peetre, New thoughts on Besov spaces, Duke Univ., Durham, NC, 1976 | MR | Zbl

[24] V. V. Peller, “Hankel operators in the perturbation theory of unbounded self-adjoint operators”, Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., 122, Dekker, New York, 1990, 529–544 | MR

[25] V. V. Peller, “Multiple operator integrals in perturbation theory”, Bull. Math. Sci., 6:1 (2016), 15–88 | DOI | MR | Zbl

[26] V. V. Peller, “The Lifshits–Krein trace formula and operator Lipschitz functions”, Proc. Amer. Math. Soc., 144 (2016), 5207–5215 | DOI | MR | Zbl

[27] G. Pisier, Similarity problems and completely bounded maps, 2nd, expanded ed. Includes the solution to “The Halmos problem”, Lecture Notes in Math., 1618, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl